Suppr超能文献

一种基于滑模控制和强化学习的混合结构柔性机械手振动控制方法

A Vibration Control Method for Hybrid-Structured Flexible Manipulator Based on Sliding Mode Control and Reinforcement Learning.

作者信息

Long Teng, Li En, Hu Yunqing, Yang Lei, Fan Junfeng, Liang Zize, Guo Rui

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):841-852. doi: 10.1109/TNNLS.2020.2979600. Epub 2021 Feb 4.

Abstract

The hybrid-structured flexible manipulator has a complex structure and strong coupling between state variables. Meanwhile, the natural frequency of the hybrid-structured flexible manipulator varies with the motion of the telescopic joint, so it is difficult to suppress the vibration quickly. In this article, the tip state signal of the hybrid-structured flexible manipulator is decomposed into elastic vibration signal and tip vibration equilibrium position signal, and a combined control method is proposed to improve tip positioning accuracy and trajectory tracking accuracy. In the proposed combined control method, an improved nominal model-based sliding mode controller (NMBSMC) is used as the main controller to output the driving torque, and an actor-critic-based reinforcement learning controller (ACBRLC) is used as an auxiliary controller to output small compensation torque. The improved NMBSMC can be divided into a nominal model-based sliding mode robust controller and a practical model-based integral sliding mode controller. Two sliding mode controllers with different structures make full use of the mathematical model and the measured data of the actual system to improve the vibration equilibrium position tracking accuracy. The ACBRLC uses the tip elastic vibration signal and the prioritized experience replay method to obtain the small reverse compensation torque, which is superimposed with the output of the NMBSMC to suppress tip vibration and improve the positioning accuracy of the hybrid-structured flexible manipulator. Finally, several groups of experiments are designed to verify the effectiveness and robustness of the proposed combined control method.

摘要

混合结构柔性机械手结构复杂,状态变量之间耦合性强。同时,混合结构柔性机械手的固有频率随伸缩关节的运动而变化,因此难以快速抑制振动。本文将混合结构柔性机械手的末端状态信号分解为弹性振动信号和末端振动平衡位置信号,并提出一种组合控制方法以提高末端定位精度和轨迹跟踪精度。在所提出的组合控制方法中,改进的基于标称模型的滑模控制器(NMBSMC)用作主控制器输出驱动转矩,基于演员-评论家的强化学习控制器(ACBRLC)用作辅助控制器输出小的补偿转矩。改进的NMBSMC可分为基于标称模型的滑模鲁棒控制器和基于实际模型的积分滑模控制器。两种不同结构的滑模控制器充分利用数学模型和实际系统的测量数据来提高振动平衡位置跟踪精度。ACBRLC利用末端弹性振动信号和优先经验回放方法获得小的反向补偿转矩,该转矩与NMBSMC的输出叠加,以抑制末端振动并提高混合结构柔性机械手的定位精度。最后,设计了几组实验来验证所提出的组合控制方法的有效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验