Suppr超能文献

Hydra:一种基于多模态基因表达特征的儿科癌症队列亚组分型混合建模框架。

Hydra: A mixture modeling framework for subtyping pediatric cancer cohorts using multimodal gene expression signatures.

机构信息

Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America.

Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, United States of America.

出版信息

PLoS Comput Biol. 2020 Apr 10;16(4):e1007753. doi: 10.1371/journal.pcbi.1007753. eCollection 2020 Apr.

Abstract

Precision oncology has primarily relied on coding mutations as biomarkers of response to therapies. While transcriptome analysis can provide valuable information, incorporation into workflows has been difficult. For example, the relative rather than absolute gene expression level needs to be considered, requiring differential expression analysis across samples. However, expression programs related to the cell-of-origin and tumor microenvironment effects confound the search for cancer-specific expression changes. To address these challenges, we developed an unsupervised clustering approach for discovering differential pathway expression within cancer cohorts using gene expression measurements. The hydra approach uses a Dirichlet process mixture model to automatically detect multimodally distributed genes and expression signatures without the need for matched normal tissue. We demonstrate that the hydra approach is more sensitive than widely-used gene set enrichment approaches for detecting multimodal expression signatures. Application of the hydra analysis framework to small blue round cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma, Ewing sarcoma, and osteosarcoma) identified expression signatures associated with changes in the tumor microenvironment. The hydra approach also identified an association between ATRX deletions and elevated immune marker expression in high-risk neuroblastoma. Notably, hydra analysis of all small blue round cell tumors revealed similar subtypes, characterized by changes to infiltrating immune and stromal expression signatures.

摘要

精准肿瘤学主要依赖于编码突变作为治疗反应的生物标志物。虽然转录组分析可以提供有价值的信息,但将其纳入工作流程一直很困难。例如,需要考虑相对而不是绝对的基因表达水平,这需要在样本之间进行差异表达分析。然而,与细胞起源和肿瘤微环境效应相关的表达程序会干扰对癌症特异性表达变化的寻找。为了解决这些挑战,我们开发了一种无监督聚类方法,用于使用基因表达测量发现癌症队列中的差异途径表达。Hydra 方法使用狄利克雷过程混合模型自动检测多模态分布的基因和表达特征,而无需匹配正常组织。我们证明,与广泛使用的基因集富集方法相比,Hydra 方法在检测多模态表达特征方面更敏感。将 Hydra 分析框架应用于蓝色小圆细胞肿瘤(包括横纹肌肉瘤、滑膜肉瘤、神经母细胞瘤、尤文肉瘤和骨肉瘤),确定了与肿瘤微环境变化相关的表达特征。Hydra 方法还发现 ATRX 缺失与高危神经母细胞瘤中免疫标志物表达升高之间存在关联。值得注意的是,对所有蓝色小圆细胞肿瘤进行 Hydra 分析揭示了相似的亚型,其特征是浸润性免疫和基质表达特征发生变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3410/7176284/7fc7947e073a/pcbi.1007753.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验