Joshi Shripad, Jan Kung-Ming, Rumschitzki David
Department of Chemical Engineering, City College of the City University of New York, NY, United States.
Department of Medicine, College of Physicians and Surgeons, Columbia University, NY, United States.
J Theor Biol. 2020 Aug 21;499:110275. doi: 10.1016/j.jtbi.2020.110275. Epub 2020 Apr 8.
Atherosclerosis starts with transmural (transwall) pressure-driven advective transport of blood-borne low-density lipoprotein (LDL) cholesterol across rare endothelial cell (EC) monolayer leaks into the arterial subendothelial intima (SI) wall layer where they can spread, bind to extracellular matrix and seed lesions. The local SI LDL concentration, which governs LDL's binding kinetics, depends on the overall diluting transmural liquid flow. Transmural pressures typically compress the SI at physiological pressures, which keeps this flow low. Nguyen et al. (2015) showed that aortic ECs express the water channel protein aquaporin-1 (AQP1) and the transEC (δP) portion of the transmural (ΔP) pressure difference drives, in parallel, water across AQP1s and plasma across interEC junctions. Since the lumen is isotonic, selective AQP1-mediated water flow should quickly render the ECs' lumen side hypertonic and the SI hypotonic; resulting transEC oncotic pressure differences, δπ, should oppose δP and quickly halt transEC flow. Yet Nguyen et al.'s (2015) transAQP1 flows persist for hours. To resolve this paradox, we extend our fluid filtration theory Joshi et al. (2015) to include mass transfer for oncotically active solutes like albumin. This addition nonlinearly couples mass transfer, fluid flow and wall mechanics. We simultaneously solve these problems at steady state. Surprisingly it finds that media layer filtration causes steady SI to exceed EC glycocalyx albumin concentration. Thus δπ reinforces rather than opposes δP, i.e., it sucks water from, rather than pushing water into the lumen from the SI. Endothelial AQP1s raise the overall driving force for flow across the EC above δP, most significantly at pressures too low to compress the SI, and they increase the ΔP needed for SI compression. This suggests the intriguing possibility that increasing EC AQP1 expression can raise this requisite compression pressure to physiological values. That is, increasing EC AQP1 may decompress the SI at physiological pressures, which would significantly increase SI thickness, flow and subsequently SI LDL dilution. This could retard LDL binding and delay preatherosclerotic lesion onset. The model also predicts that glycocalyx-degrading enzymes decrease overall transEC driving forces and thus lower, not raise, transmural water flux.
动脉粥样硬化始于血液中低密度脂蛋白(LDL)胆固醇在跨壁压力驱动下的平流运输,其通过内皮细胞(EC)单层的罕见渗漏进入动脉内膜下层(SI)壁层,在那里LDL可以扩散、结合细胞外基质并引发病变。决定LDL结合动力学的局部SI中LDL浓度取决于整体稀释性的跨壁液体流动。跨壁压力通常在生理压力下压缩SI,这使得这种流动很低。阮等人(2015年)表明,主动脉内皮细胞表达水通道蛋白水通道蛋白-1(AQP1),跨壁(ΔP)压力差中的跨内皮(δP)部分同时驱动水通过AQP1以及血浆通过内皮细胞间连接。由于管腔是等渗的,选择性的AQP1介导的水流应迅速使内皮细胞的管腔侧变为高渗,而SI变为低渗;由此产生的跨内皮渗透压差值δπ应与δP相反,并迅速停止跨内皮流动。然而,阮等人(2015年)的跨AQP1流动持续数小时。为了解决这个矛盾,我们扩展了我们的流体过滤理论乔希等人(2015年),以纳入对白蛋白等具有渗透活性的溶质的传质。这种添加将传质、流体流动和壁力学非线性地耦合在一起。我们在稳态下同时解决这些问题。令人惊讶的是,研究发现中膜层过滤导致稳态下SI中的白蛋白浓度超过内皮糖萼中的浓度。因此,δπ增强而不是对抗δP,即它从SI中吸水,而不是将水从SI推向管腔。内皮AQP1增加了跨内皮流动的整体驱动力,使其高于δP,在压力过低而无法压缩SI时最为显著,并且它们增加了压缩SI所需的ΔP。这表明了一种有趣的可能性,即增加内皮AQP1的表达可以将这种所需的压缩压力提高到生理值。也就是说,增加内皮AQP1可能在生理压力下使SI减压,这将显著增加SI的厚度、流动以及随后SI中LDL的稀释。这可能会阻碍LDL的结合并延迟动脉粥样硬化前期病变的发生。该模型还预测,糖萼降解酶会降低整体跨内皮驱动力,从而降低而不是提高跨壁水通量。