Suppr超能文献

利用优化的估计有效迁移面检测柬埔寨间日疟原虫寄生虫迁移的地理空间模式。

Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces.

机构信息

Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, College Park, 20742, MD, USA.

Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA.

出版信息

Int J Health Geogr. 2020 Apr 10;19(1):13. doi: 10.1186/s12942-020-00207-3.

Abstract

BACKGROUND

Understanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam.

METHODS

The optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns.

RESULTS

Optimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns.

CONCLUSIONS

Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.

摘要

背景

了解自然种群的遗传结构可以深入了解影响这些种群的人口和适应性过程。这些信息,特别是与地理空间数据相结合时,可以为包括公共卫生在内的各种领域提供转化应用。估计有效迁移面(EEMS)是一种方法,可以可视化基因组数据中的空间模式,以了解种群结构和迁移。在这项研究中,我们开发了一种工作流程来优化用于生成 EEMS 迁移图的空间网格的分辨率,并将这种经过优化的工作流程应用于估计柬埔寨和泰国及越南边境地区的疟原虫的迁移。

方法

根据使用密度聚类定义基因组簇和基因组簇之间的空间距离的新工作流程,确定 EEMS 网格的最佳密度。拓扑骨架用于捕获每个基因组簇的空间分布并确定 EEMS 网格密度;即,基因组和空间聚类都用于指导 EEMS 网格的优化。使用优化后的工作流程测试和比较迁移估计的模型准确性与未使用优化工作流程选择的网格分辨率。作为一个测试案例,将优化后的工作流程应用于从柬埔寨和边境地区采集的疟原虫生成的基因组数据,并将迁移图与疟疾流行率的估计值以及研究区域的地理特性进行比较,作为验证观察到的迁移模式的一种手段。

结果

与以无指导方式选择的网格密度相比,优化后的网格显示出更高的模型准确性和更短的计算时间。此外,使用优化后的网格生成的疟原虫 EEMS 迁移图与疟疾流行率的估计值以及研究区域的地理特性相对应,这些特性可能会影响疟原虫的迁移,支持观察到的迁移模式的有效性。

结论

优化后的网格减少了 EEMS 轮廓中的空间不确定性,这种不确定性可能是由于模型中使用的空间网格的分辨率等用户定义参数引起的。这种工作流程将对广泛的 EEMS 用户有用,因为它可以应用于涉及其他感兴趣的生物和地理区域的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2d/7149848/da64d72a7b87/12942_2020_207_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验