Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America.
Department of Statistics, University of Chicago, Illinois, United States of America.
PLoS Genet. 2019 Jan 14;15(1):e1007908. doi: 10.1371/journal.pgen.1007908. eCollection 2019 Jan.
In many species a fundamental feature of genetic diversity is that genetic similarity decays with geographic distance; however, this relationship is often complex, and may vary across space and time. Methods to uncover and visualize such relationships have widespread use for analyses in molecular ecology, conservation genetics, evolutionary genetics, and human genetics. While several frameworks exist, a promising approach is to infer maps of how migration rates vary across geographic space. Such maps could, in principle, be estimated across time to reveal the full complexity of population histories. Here, we take a step in this direction: we present a method to infer maps of population sizes and migration rates associated with different time periods from a matrix of genetic similarity between every pair of individuals. Specifically, genetic similarity is measured by counting the number of long segments of haplotype sharing (also known as identity-by-descent tracts). By varying the length of these segments we obtain parameter estimates associated with different time periods. Using simulations, we show that the method can reveal time-varying migration rates and population sizes, including changes that are not detectable when using a similar method that ignores haplotypic structure. We apply the method to a dataset of contemporary European individuals (POPRES), and provide an integrated analysis of recent population structure and growth over the last ∼3,000 years in Europe.
在许多物种中,遗传多样性的一个基本特征是遗传相似性随地理距离的增加而衰减;然而,这种关系通常很复杂,并且可能随空间和时间而变化。揭示和可视化这种关系的方法在分子生态学、保护遗传学、进化遗传学和人类遗传学的分析中得到了广泛应用。虽然存在几种框架,但一种很有前途的方法是推断出迁移率在地理空间中变化的图谱。这些图谱原则上可以随时间估计,以揭示种群历史的全部复杂性。在这里,我们朝着这个方向迈出了一步:我们提出了一种从每对个体之间的遗传相似性矩阵中推断与不同时间段相关的种群大小和迁移率图谱的方法。具体来说,遗传相似性通过计算单倍型共享(也称为血缘关系片段)的长片段数量来衡量。通过改变这些片段的长度,我们得到与不同时间段相关的参数估计。通过模拟,我们表明该方法可以揭示时变的迁移率和种群大小,包括当使用忽略单倍型结构的类似方法时无法检测到的变化。我们将该方法应用于当代欧洲个体的数据集(POPRES),并对过去 3000 年左右欧洲最近的人口结构和增长进行了综合分析。