Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, B473 Biomedical & Biological Sciences Research Building (BBSRB), 741 South Limestone St, Lexington, KY, 40536-0509, USA.
Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3901, USA.
Acta Neuropathol Commun. 2020 Apr 10;8(1):46. doi: 10.1186/s40478-020-00925-6.
Cellular damage associated with traumatic brain injury (TBI) manifests in motor and cognitive dysfunction following injury. Experimental models of TBI reveal cell death in the granule cell layer (GCL) of the hippocampal dentate gyrus acutely after injury. Adult-born neurons residing in the neurogenic niche of the GCL, the subgranular zone, are particularly vulnerable. Injury-induced proliferation of neural progenitors in the subgranular zone supports recovery of the immature neuron population, but their development and localization may be altered, potentially affecting long-term survival. Here we show that increasing hippocampal levels of insulin-like growth factor-1 (IGF1) is sufficient to promote end-stage maturity of posttrauma-born neurons and improve cognition following TBI. Mice with conditional overexpression of astrocyte-specific IGF1 and wild-type mice received controlled cortical impact or sham injury and bromo-2'-deoxyuridine injections for 7d after injury to label proliferating cells. IGF1 overexpression increased the number of GCL neurons born acutely after trauma that survived 6 weeks to maturity (NeuN+BrdU+), and enhanced their outward migration into the GCL while significantly reducing the proportion localized ectopically to the hilus and molecular layer. IGF1 selectively affected neurons, without increasing the persistence of posttrauma-proliferated glia in the dentate gyrus. IGF1 overexpressing animals performed better during radial arm water maze reversal testing, a neurogenesis-dependent cognitive test. These findings demonstrate the ability of IGF1 to promote the long-term survival and appropriate localization of granule neurons born acutely after a TBI, and suggest these new neurons contribute to improved cognitive function.
创伤性脑损伤 (TBI) 相关的细胞损伤表现为损伤后运动和认知功能障碍。TBI 的实验模型显示,损伤后急性海马齿状回颗粒细胞层 (GCL) 中存在细胞死亡。位于 GCL 神经发生龛(即颗粒下区)中的成年新生神经元特别容易受到影响。损伤诱导的颗粒下区神经祖细胞增殖支持不成熟神经元群体的恢复,但它们的发育和定位可能会发生改变,这可能会影响其长期存活。在这里,我们表明增加海马 IGF1 水平足以促进创伤后新生神经元的终末成熟,并改善 TBI 后的认知功能。条件性过表达星形胶质细胞特异性 IGF1 的小鼠和野生型小鼠接受皮质控制冲击或假损伤,并在损伤后 7d 进行溴脱氧尿苷注射以标记增殖细胞。IGF1 过表达增加了急性创伤后出生的 GCL 神经元数量,这些神经元存活到 6 周达到成熟(NeuN+BrdU+),并增强了它们向外迁移到 GCL 的能力,同时显著减少了异位定位于门区和分子层的比例。IGF1 选择性地影响神经元,而不会增加创伤后增殖的齿状回神经胶质的持续存在。IGF1 过表达动物在放射臂水迷宫反转测试中的表现更好,这是一种依赖神经发生的认知测试。这些发现表明 IGF1 具有促进 TBI 后急性出生的颗粒神经元长期存活和适当定位的能力,并表明这些新神经元有助于改善认知功能。