Suppr超能文献

iMM1865:一种新的小鼠全基因组代谢模型重建。

iMM1865: A New Reconstruction of Mouse Genome-Scale Metabolic Model.

机构信息

Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2020 Apr 10;10(1):6177. doi: 10.1038/s41598-020-63235-w.

Abstract

Since the first in silico generation of a genome-scale metabolic (GSM) model for Haemophilus influenzae in 1999, the GSM models have been reconstructed for various organisms including human and mouse. There are two important strategies for generating a GSM model: in the bottom-up approach, individual genomic and biochemical components are integrated to build a GSM model. Alternatively, the orthology-based strategy uses a previously reconstructed model of a reference organism to infer a GSM model of a target organism. Following the update and development of the metabolic network of reference organism, the model of the target organism can also be updated to eliminate defects. Here, we presented iMM1865 model as an orthology-based reconstruction of a GSM model for Mus musculus based on the last flux-consistent version of the human metabolic network, Recon3D. We proposed two versions of the new mouse model, iMM1865 and min-iMM1865, with the same number of gene-associated reactions but different subsets of non-gene-associated reactions. A third extended but flux-inconsistent model (iMM3254) was also created based on the extended version of Recon3D. Compared to the previously published mouse models, both versions of iMM1865 include more comprehensive annotations of metabolites and reactions with no dead-end metabolites and blocked reactions. We evaluated functionality of the models using 431 metabolic objective functions. iMM1865 and min-iMM1865 passed 93% and 87% of the tests, respectively, while iMM1415 and MMR (another available mouse GSM) passed 80% and 84% of the tests, respectively. Three versions of tissue-specific embryo heart models were also reconstructed from each of iMM1865 and min-iMM1865 using mCADRE algorithm with different thresholds on expression-based scores. The ability of corresponding GSM and embryo heart models to predict essential genes was assessed across experimentally derived lethal and viable gene sets. Our analysis revealed that tissue-specific models render much better predictions than GSM models.

摘要

自 1999 年首次为流感嗜血杆菌生成基因组规模代谢 (GSM) 模型以来,已经为包括人类和小鼠在内的各种生物体重建了 GSM 模型。生成 GSM 模型有两种重要策略:在自下而上的方法中,将各个基因组和生化组件整合起来构建 GSM 模型。或者,基于同源性的策略使用先前重建的参考生物体模型来推断目标生物体的 GSM 模型。随着参考生物体代谢网络的更新和发展,目标生物体的模型也可以进行更新以消除缺陷。在这里,我们提出了 iMM1865 模型,这是基于人类代谢网络的最后通量一致版本 Recon3D 的基于同源性的小鼠 GSM 模型的重建。我们提出了新的小鼠模型的两个版本,iMM1865 和 min-iMM1865,它们具有相同数量的基因相关反应,但非基因相关反应的子集不同。还基于 Recon3D 的扩展版本创建了第三个扩展但通量不一致的模型 (iMM3254)。与之前发表的小鼠模型相比,iMM1865 的两个版本都包含更全面的代谢物和反应注释,没有无出路代谢物和受阻反应。我们使用 431 种代谢物目标函数来评估模型的功能。iMM1865 和 min-iMM1865 分别通过了 93%和 87%的测试,而 iMM1415 和 MMR(另一种可用的小鼠 GSM)分别通过了 80%和 84%的测试。还使用 mCADRE 算法从 iMM1865 和 min-iMM1865 的每个版本中重建了三种组织特异性胚胎心脏模型,并对基于表达得分的阈值进行了不同的设置。使用相应的 GSM 和胚胎心脏模型评估了在实验衍生的致死和存活基因集中预测必需基因的能力。我们的分析表明,组织特异性模型比 GSM 模型的预测效果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ef/7148337/53367eaba481/41598_2020_63235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验