Department of Biochemistry & Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
Present address: Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA.
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11108-11114. doi: 10.1002/anie.202003527. Epub 2020 Apr 30.
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side-chain dynamics of the α-helical sensory rhodopsin II and the β-barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl-bearing side-chain motion that is largely independent of membrane mimetic. The methyl-bearing side chains of both proteins are, on average, more dynamic in the ps-ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane-protein functions, including ligand binding, allostery, and signaling.
整膜蛋白的内部运动在很大程度上仍难以进行全面的实验描述。在这里,通过溶液 NMR 弛豫技术研究了 α-螺旋感应视紫红质 II 和 β-桶外膜蛋白 W 在脂质双层和去污剂胶束中的快速侧链动力学。尽管它们的拓扑结构不同,但这两种蛋白质的甲基侧链运动分布相似,且与膜模拟物基本无关。与迄今为止所描述的任何可溶性蛋白质相比,这两种蛋白质的甲基侧链在 ps-ns 时间尺度上的平均运动速度都更快。因此,这两种蛋白质在折叠状态下都保持着非凡的残余构象熵,这为缺乏疏水性效应提供了平衡。此外,高构象熵可能会极大地影响膜蛋白功能的热力学基础,包括配体结合、变构和信号转导。