Suppr超能文献

使用溶液核磁共振波谱法表征蛋白质水合动力学

Characterizing Protein Hydration Dynamics Using Solution NMR Spectroscopy.

作者信息

Jorge Christine, Marques Bryan S, Valentine Kathleen G, Wand A Joshua

机构信息

Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Methods Enzymol. 2019;615:77-101. doi: 10.1016/bs.mie.2018.09.040. Epub 2018 Dec 4.

Abstract

Protein hydration is a critical aspect of protein stability, folding, and function and yet remains difficult to characterize experimentally. Solution NMR offers a route to a site-resolved view of the dynamics of protein-water interactions through the nuclear Overhauser effects between hydration water and the protein in the laboratory (NOE) and rotating (ROE) frames of reference. However, several artifacts and limitations including contaminating contributions from bulk water potentially plague this general approach and the corruption of measured NOEs and ROEs by hydrogen exchange-relayed magnetization. Fortunately, encapsulation of single protein molecules within the water core of a reverse micelle overcomes these limitations. The main advantages are the suppression hydrogen exchange and elimination of bulk water. Here we detail guidelines for the preparation solutions of encapsulated proteins that are suitable for characterization by NOE and ROE spectroscopy. Emphasis is placed on understanding the contribution of detected NOE intensity arising from magnetization relayed by hydrogen exchange. Various aspects of fitting obtained NOE, selectively decoupled NOE, and ROE time courses are illustrated.

摘要

蛋白质水合作用是蛋白质稳定性、折叠和功能的关键方面,但仍难以通过实验进行表征。溶液核磁共振(NMR)提供了一条途径,通过水合水与蛋白质在实验室(NOE)和旋转(ROE)参考系中的核Overhauser效应,实现对蛋白质-水相互作用动力学的位点分辨观察。然而,包括大量水的污染贡献在内的一些假象和局限性可能困扰这种通用方法,以及氢交换中继磁化对测量的NOE和ROE的破坏。幸运的是,将单个蛋白质分子封装在反胶束的水核中克服了这些局限性。主要优点是抑制氢交换和消除大量水。在这里,我们详细介绍了适用于通过NOE和ROE光谱表征的封装蛋白质溶液的制备指南。重点在于理解由氢交换中继的磁化所产生的检测到的NOE强度的贡献。说明了拟合获得的NOE、选择性去耦NOE和ROE时间进程的各个方面。

相似文献

2
Mapping the hydration dynamics of ubiquitin.绘制泛素的水合动力学图谱。
J Am Chem Soc. 2011 Aug 17;133(32):12326-9. doi: 10.1021/ja202033k. Epub 2011 Jul 22.
4
Protein hydration in aqueous solution.水溶液中的蛋白质水合作用。
Faraday Discuss. 1992(93):35-45. doi: 10.1039/fd9929300035.

引用本文的文献

1
Catalytic Serine Labeling in Nonaqueous, Acidic Media.非水酸性介质中的催化丝氨酸标记
Chemistry. 2025 Feb 25;31(12):e202404002. doi: 10.1002/chem.202404002. Epub 2025 Feb 9.
3
Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding.低熵水合壳层的空间布局指导蛋白质结合。
Glob Chall. 2023 May 2;7(7):2300022. doi: 10.1002/gch2.202300022. eCollection 2023 Jul.
5
Protein conformational entropy is not slaved to water.蛋白质构象熵不受水的支配。
Sci Rep. 2020 Oct 16;10(1):17587. doi: 10.1038/s41598-020-74382-5.
6
The role of NMR in leveraging dynamics and entropy in drug design.NMR 在利用动力学和熵来进行药物设计中的作用。
J Biomol NMR. 2020 Nov;74(10-11):479-498. doi: 10.1007/s10858-020-00335-9. Epub 2020 Jul 27.
7
Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy.膜蛋白具有独特的快速内部运动和剩余构象熵。
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11108-11114. doi: 10.1002/anie.202003527. Epub 2020 Apr 30.

本文引用的文献

3
Nanoconfinement's Dramatic Impact on Proton Exchange between Glucose and Water.纳米限域对葡萄糖与水之间质子交换的显著影响。
J Phys Chem Lett. 2016 Nov 17;7(22):4597-4601. doi: 10.1021/acs.jpclett.6b01651. Epub 2016 Nov 2.
4
Water Determines the Structure and Dynamics of Proteins.水决定蛋白质的结构与动力学。
Chem Rev. 2016 Jul 13;116(13):7673-97. doi: 10.1021/acs.chemrev.5b00664. Epub 2016 May 17.
8
Measurement and control of pH in the aqueous interior of reverse micelles.反胶束水相中的 pH 值的测量与控制。
J Phys Chem B. 2014 Feb 27;118(8):2020-31. doi: 10.1021/jp4103349. Epub 2014 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验