Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
J Hazard Mater. 2020 Jul 15;394:122578. doi: 10.1016/j.jhazmat.2020.122578. Epub 2020 Mar 27.
Earth-abundant, environmental-benign and durable catalysts are of paramount importance for remediation of organic pollutants, and graphitic carbon nitride (g-CN) is a promising nonmetallic material for this application. However, the catalytic oxidation on g-CN suffers from low efficiency because of its chemical inertness if not irradiated with light. Herein, we develop a facile copolymerization strategy for the synthesis of carbon and oxygen dual-doped g-CN using urea as g-CN precursor and ascorbic acid (AA) as carbon and oxygen sources, which induces electronic structure reconfiguration. By replacing AA with other organic precursors, a series of C and O dual-doped g-CN are successfully prepared, demonstrating the generality of the developed methodology. As a demonstration, the C and O dual-doped g-CN using AA as the organic precursor (CN-AA) exhibits pronouncedly enhanced catalytic activity in peroxymonosulfate (PMS) activation for organic pollutant degradation without light irradiation compared with pristine g-CN and single oxygen-doped g-CN. Experimental and theoretical results revealed the electron-poor C atoms and electron-rich O atoms as active sites for PMS activation in terms of simultaneous PMS oxidation and reduction. This work offers a universal approach to synthesize nonmetal dual-doped g-CN with reconfigured electronic structure, stimulating the development of g-CN-based materials for diverse environmental applications.
富含地球、环境友好且持久的催化剂对于有机污染物的修复至关重要,而石墨相氮化碳 (g-CN) 是一种很有前途的用于此应用的非金属材料。然而,如果没有光照,g-CN 的催化氧化由于其化学惰性而效率低下。在此,我们开发了一种简便的共聚策略,使用尿素作为 g-CN 前体和抗坏血酸 (AA) 作为碳和氧源,来合成碳和氧双掺杂的 g-CN,从而引起电子结构的重新配置。通过用其他有机前体替代 AA,成功制备了一系列 C 和 O 双掺杂的 g-CN,证明了所开发方法的通用性。作为一个示范,使用 AA 作为有机前体的 C 和 O 双掺杂 g-CN(CN-AA)在过一硫酸盐 (PMS) 激活方面表现出明显增强的催化活性,用于有机污染物降解,而无需光照,与原始 g-CN 和单氧掺杂 g-CN 相比。实验和理论结果表明,贫电子 C 原子和富电子 O 原子作为 PMS 激活的活性位点,同时进行 PMS 的氧化和还原。这项工作提供了一种通用的方法来合成具有重新配置的电子结构的非金属双掺杂 g-CN,刺激了基于 g-CN 的材料在各种环境应用中的发展。