Kao A, Gan T, Tonry C, Krastins I, Pericleous K
Centre for Numerical Modelling and Process Analysis, University of Greenwich, Old Royal Naval College, Park Row, London SE109LS, UK.
Institute of Physics, University of Latvia, 32 Miera iela, Salaspils 2169, Latvia.
Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20190249. doi: 10.1098/rsta.2019.0249. Epub 2020 Apr 13.
Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.
在金属增材制造中,熔池内由快速加热随后快速冷却产生的大温度梯度会产生大的热电流。对该过程施加外部磁场会通过热电磁流体动力学引入流体流动。热量和质量的对流传输随后可以改变熔池动力学并改变微观结构演变。作为一种新技术,这在控制过程以提高质量和减少缺陷形成方面显示出巨大潜力。然而,科学界对这种物理现象的基本原理了解甚少,无法支持实际应用。为了解决这个将熔化/凝固、电磁学、流体动力学、热量和质量传输等关键现象耦合在一起的多物理问题,将流体动力学的格子玻尔兹曼方法与一个专门用于凝固建模和电磁学的代码相结合。本文提出的理论研究考察了磁场引入的流体动力学机制。然后,利用基于元胞自动机的晶粒生长模型,将得到的熔池形状和热场的稳态解用于预测微观结构演变。结果清楚地表明,流体动力学机制以及微观结构特征强烈依赖于磁场方向。本文是主题为“软物质和生物物质中的模式”的一部分。