Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria.
Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110775. doi: 10.1016/j.msec.2020.110775. Epub 2020 Feb 24.
Template-mediated self-assembly synthesis has produced a diverse range of biomimetic materials with unique physicochemical properties. Here, we fabricated novel fluorescent three-dimensional (3-D) hydroxyapatite (HAP) nanorod-assembled microspheres using iron quantum cluster (FeQC) as a hybrid template, containing three organic components: hemoglobin chains, piperidine, and iron clusters. The material characterization indicated that the synthesized HAP possessed a uniform rod-like morphology, ordered 3-D architecture, high crystallinity, self-activated fluorescence, and remarkable photostability. Our study proposed that this FeQC template is a promising regulating agent to fabricate fluorescent self-assembled HAP microspheres with a controlled morphology. The effect of HAP on stem cell fate and their osteogenic differentiation was investigated by culturing human bone marrow-derived mesenchymal stromal/stem cells (BMSCs) with HAP microspheres. Significant increases in collagen matrix production and gene expression of osteogenic markers, including osteocalcin (OCN), Runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP) and alkaline phosphatase (ALP), were observed compared to the controls after 21 days of culture. Taken together, our data suggest that synthetic HAP nanorod-assembled microspheres represent a promising new biomaterial which exhibits enhanced fluorescent properties and osteoinductive effects on human BMSCs.
模板介导的自组装合成方法已经产生了具有独特物理化学性质的多种仿生材料。在这里,我们使用铁量子簇 (FeQC) 作为混合模板,制造了新型荧光三维 (3-D) 羟基磷灰石 (HAP) 纳米棒组装微球,其中包含三个有机成分:血红蛋白链、哌啶和铁簇。材料表征表明,合成的 HAP 具有均匀的棒状形态、有序的 3-D 结构、高结晶度、自激活荧光和显著的光稳定性。我们的研究表明,这种 FeQC 模板是一种很有前途的调节剂,可以制备具有受控形态的荧光自组装 HAP 微球。通过用 HAP 微球培养人骨髓间充质干细胞 (BMSCs),研究了 HAP 对干细胞命运及其成骨分化的影响。与对照组相比,培养 21 天后,观察到胶原蛋白基质产生显著增加,成骨标志物的基因表达,包括骨钙素 (OCN)、Runt 相关转录因子 2 (Runx2)、骨涎蛋白 (BSP) 和碱性磷酸酶 (ALP)。总之,我们的数据表明,合成的 HAP 纳米棒组装微球代表了一种有前途的新型生物材料,它具有增强的荧光特性和对人 BMSCs 的成骨诱导作用。