Larson Justin, Baker Justin, Latta Gregory, Ohrel Sara, Wade Christopher
RTI International, Research Triangle Park, North Carolina.
Forest Economics and Interim Director of Policy Analysis Group, Univ. of Idaho, Moscow.
For Prod J. 2018;68(3):303-316.
To model international trade of forest products we use a gravity model of trade. In modeling trade, we estimate the impact of importer gross domestic product (GDP), exporter GDP, and distance between trading partners using Poisson pseudo-maximum likelihood (PPML). When estimating the log-linearized gravity model (ordinary least squares [OLS]), two issues arise. First, potential bias associated with truncation of all zero-trade observations due to the nonexistence of the natural log of zero. Second, heteroscedasticity can bias results from the log-linearized gravity model because of the multiplicative error term of the stochastic gravity model. To address these two issues, we propose avoiding the log-linearized gravity model and instead estimate the nonlinear gravity model via PPML. To estimate the model, trade data are compiled from the Food and Agriculture Organization of the United Nations. The observation window is from 1997 to 2014 and covers 13 product categories at a country-pair level. In our estimation, we find systematic differences in estimates from OLS in comparison with estimates from PPML. Using the estimated elasticities, in combination with estimates of future GDP from shared socioeconomic pathways, we project future US exports to the year 2030 for each item category in addition to total exports for Brazilian wood pulp, New Zealand industrial roundwood, and Canadian coniferous sawnwood. Using our approach, we provide a tool for policy makers and industry leaders alike to make informed decisions over prior estimates of forest product trade.
为了构建林产品国际贸易模型,我们使用了贸易引力模型。在构建贸易模型时,我们使用泊松伪极大似然估计法(PPML)来估计进口国国内生产总值(GDP)、出口国GDP以及贸易伙伴之间距离的影响。在估计对数线性化引力模型(普通最小二乘法[OLS])时,会出现两个问题。第一,由于零的自然对数不存在,所有零贸易观测值被截断会带来潜在偏差。第二,由于随机引力模型的乘法误差项,异方差会使对数线性化引力模型的结果产生偏差。为了解决这两个问题,我们建议避免使用对数线性化引力模型,而是通过PPML估计非线性引力模型。为了估计该模型,贸易数据是从联合国粮食及农业组织汇编而来的。观测窗口为1997年至2014年,涵盖了国家对层面的13种产品类别。在我们的估计中,我们发现与PPML估计相比,OLS估计存在系统差异。利用估计的弹性,并结合共享社会经济路径下的未来GDP估计,我们预测了到2030年美国对各产品类别的未来出口,以及巴西木浆、新西兰工业圆木和加拿大针叶锯材的总出口。使用我们的方法,我们为政策制定者和行业领导者提供了一个工具,以便他们在对林产品贸易的先前估计基础上做出明智决策。