Suppr超能文献

柴油粘度对侵蚀工况下空化节流流动模拟的影响

Influence of Diesel Fuel Viscosity on Cavitating Throttle Flow Simulations under Erosive Operation Conditions.

作者信息

Cristofaro Marco, Edelbauer Wilfried, Koukouvinis Phoevos, Gavaises Manolis

机构信息

AVL List GmbH, Hans-List-Platz 1, 8020 Graz, Austria.

City University London, Northampton Square, EC1V 0HB London, U.K.

出版信息

ACS Omega. 2020 Mar 26;5(13):7182-7192. doi: 10.1021/acsomega.9b03623. eCollection 2020 Apr 7.

Abstract

This work investigates the effect of liquid fuel viscosity, as specific by the European Committee for Standardization 2009 (European Norm) for all automotive fuels, on the predicted cavitating flow in micro-orifice flows. The wide range of viscosities allowed leads to a significant variation in orifice nominal Reynolds numbers for the same pressure drop across the orifice. This in turn, is found to affect flow detachment and the formation of large-scale vortices and microscale turbulence. A pressure-based compressible solver is used on the filtered Navier-Stokes equations using the multifluid approach; separate velocity fields are solved for each phase, which share a common pressure. The rates of evaporation and condensation are evaluated with a simplified model based on the Rayleigh-Plesset equation; the coherent structure model is adopted for the subgrid scale modeling in the momentum conservation equation. The test case simulated is a well-reported benchmark throttled flow channel geometry, referred to as "I-channel"; this has allowed for easy optical access for which flow visualization and laser-induced fluorescence measurements allowed for validation of the developed methodology. Despite its simplicity, the I-channel geometry is found to reproduce the most characteristic flow features prevailing in high-speed flows realized in cavitating fuel injectors. Subsequently, the effect of liquid viscosity on integral mass flow, velocity profiles, vapor cavity distribution, and pressure peaks indicating locations prone to cavitation erosion is reported.

摘要

本研究探讨了液体燃料粘度对微喷孔内空化流动预测结果的影响,液体燃料粘度由欧洲标准化委员会2009年(欧洲标准)针对所有汽车燃料进行规定。所允许的粘度范围很广,对于喷孔两端相同的压降,会导致喷孔名义雷诺数有显著变化。进而发现,这会影响流动分离以及大尺度涡旋和微尺度湍流的形成。基于压力的可压缩求解器用于采用多流体方法的滤波后的纳维-斯托克斯方程;为每个共享共同压力的相求解单独的速度场。蒸发和冷凝速率采用基于瑞利-普莱斯方程的简化模型进行评估;在动量守恒方程的亚网格尺度建模中采用相干结构模型。模拟的测试案例是一个有充分报道的基准节流流道几何形状,称为“I型流道”;这便于进行光学观察,通过流动可视化和激光诱导荧光测量对所开发的方法进行验证。尽管I型流道几何形状很简单,但发现它能再现空化燃料喷射器中高速流动中最典型的流动特征。随后,报告了液体粘度对积分质量流量、速度剖面、蒸汽腔分布以及表明易发生空蚀位置的压力峰值的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/553a/7143437/58c74bd05f99/ao9b03623_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验