Argonne National Laboratory, Argonne, IL 60439, USA.
Sci Rep. 2013;3:2067. doi: 10.1038/srep02067.
Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating.
空化是一种复杂的多相现象,与流体流动中的湍流相互作用。它在特性上表现出明显的双重性,在我们的日常生活和工业过程中既有破坏性又有有益性。尽管这种现象发生的次数很多,但在引导利用该过程产生的瞬态和局部动力的努力方面,高度动态和多相空化流并没有得到根本的很好理解。在微尺度多相流动液体喷射系统中,我们协同使用时间分辨 X 射线照相术和一种新的模拟方法进行实验,定量揭示了喷射器几何形状和喷嘴内空化之间的关系。我们证明,在微米尺度上对几何形状进行微小的改变可以诱导明显的层流或空化流,验证了多相计算流体动力学模拟。此外,模拟确定了一个关键的几何参数,高速流动通过该参数发生了从非空化到空化的有趣转变。