Suppr超能文献

基于病例的抗菌药物耐药性监测及完整药敏谱分析。

Case-based surveillance of antimicrobial resistance with full susceptibility profiles.

作者信息

Ryu Sukhyun, Cowling Benjamin J, Wu Peng, Olesen Scott, Fraser Christophe, Sun Daphne S, Lipsitch Marc, Grad Yonatan H

机构信息

WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.

Department of Preventive Medicine, College of Medicine, Konyang University, Daejeon, Republic of Korea.

出版信息

JAC Antimicrob Resist. 2019 Dec;1(3):dlz070. doi: 10.1093/jacamr/dlz070. Epub 2019 Dec 10.

Abstract

Surveillance of antimicrobial resistance (AMR) is essential for clinical decision-making and for public health authorities to monitor patterns in resistance and evaluate the effectiveness of interventions and control measures. Existing AMR surveillance is typically based on reports from hospital laboratories and public health laboratories, comprising reports of pathogen frequencies and resistance frequencies among each species detected. Here we propose an improved framework for AMR surveillance, in which the unit of surveillance is patients with specific conditions, rather than biological samples of a particular type. In this 'case-based' surveillance, denominators as well as numerators will be clearly defined with clinical relevance and more comparable at the local, national and international level. In locations with sufficient resources, individual-based data on patient characteristics and full antibiotic susceptibility profiles would provide high-quality evidence for monitoring resistant pathogens of clinical importance, clinical treatment of infections and public health responses to outbreaks of infections with resistant bacteria.

摘要

对抗菌素耐药性(AMR)的监测对于临床决策以及公共卫生当局监测耐药模式、评估干预措施和控制措施的有效性至关重要。现有的AMR监测通常基于医院实验室和公共卫生实验室的报告,包括所检测的每个物种中的病原体频率和耐药频率报告。在此,我们提出了一种改进的AMR监测框架,其中监测单位是患有特定疾病的患者,而不是特定类型的生物样本。在这种“基于病例”的监测中,分母和分子都将根据临床相关性进行明确定义,并且在地方、国家和国际层面上更具可比性。在资源充足的地区,基于个体的患者特征数据和完整的抗生素敏感性谱将为监测具有临床重要性的耐药病原体、感染的临床治疗以及对耐药菌感染爆发的公共卫生应对提供高质量证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验