Suppr超能文献

一种利用3D打印补偿器模具为小动物辐照器生成调强放射治疗射野的方法。

A method for generating intensity-modulated radiation therapy fields for small animal irradiators utilizing 3D-printed compensator molds.

作者信息

Yoon Suk W, Kodra Jacob, Miles Devin A, Kirsch David G, Oldham Mark

机构信息

Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, 19104, USA.

Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA.

出版信息

Med Phys. 2020 Sep;47(9):4363-4371. doi: 10.1002/mp.14175. Epub 2020 Jul 6.

Abstract

PURPOSE

The purpose of this study was to investigate the feasibility of using fused deposition modeling (FDM) three-dimensional (3D) printer to generate radiation compensators for high-resolution (~1 mm) intensity-modulated radiation therapy (IMRT) for small animal radiation treatment. We propose a novel method incorporating 3D-printed compensator molds filled with NaI powder.

METHODS

The inverse planning module of the computational environment for radiotherapy research (CERR) software was adapted to simulate the XRAD-225Cx irradiator, both geometry and kV beam quality (the latter using a phase space file provided for XRAD-225Cx). A nine-field IMRT treatment was created for a scaled-down version of the imaging and radiation oncology core (IROC) Head and Neck IMRT credentialing test, recreated on a 2.2-cm-diameter cylindrical phantom. Optimized fluence maps comprising nine fields and a total of 2564 beamlets were calculated at resolution of 1.25 × 1.25 mm . A hollow compensator mold was created (using in-house software and algorithm) for each field using 3D printing with polylactic acid (PLA) filaments. The molds were then packed with sodium iodide powder (NaI, measured density ρ  = 2.062 g/cm ). The mounted compensator mold thickness was limited to 13.8 mm due to clearance issues with couch collision. At treatment delivery, each compensator was manually mounted to a customized block tray attached to the reference 40 × 40 mm collimator. Compensator reproducibility among three repeated 3D-printed molds was measured with Radiochromic EBT2 film. The two-dimensional (2D) dose distributions of the nine fields were compared to calculated 2D doses from CERR using gamma comparisons with distance-to-agreement criteria of 0.5-0.25 mm and dose difference criteria of 3-5%.

RESULTS

Good reproducibility of 3D-printed compensator manufacture was observed with mean error of ±0.024 Gy and relative dose error of ±4.2% within the modulated part of the beam. Within the limit of 13.8 mm compensator height, a maximum radiation blocking efficiency of 91.5% was achieved. Per field, about 45.5 g of NaI powder was used. Gamma analysis on each of the nine delivered IMRT fields using radiochromic films resulted in eight of nine treatment fields with >90% pass rate with 5%/0.5 mm tolerances. However, low gamma passing rate of 49-66% (3%/0.25 mm to 5%/0.5 mm) was noted in one field, attributed to fabrication errors resulting in over-filling the mold. The nine-field treatment plan was delivered in under 30 min with no mechanical or collisional issues.

CONCLUSIONS

We show the feasibility of high spatial resolution IMRT treatment on a small animal irradiator utilizing 3D-printed compensator shells packed with NaI powder. Using the PLA mold with NaI powder was attractive due to the ease of 3D printing a PLA mold at high geometric resolution and the well-balanced attenuation properties of NaI powders that prevented the mold from becoming too bulky. IMRT fields with 1.25-mm resolution are capable with significant fluence modulation with relative dose accuracy of ±4.2%.

摘要

目的

本研究旨在探讨使用熔融沉积建模(FDM)三维(3D)打印机为小动物放射治疗生成用于高分辨率(约1毫米)调强放射治疗(IMRT)的放射补偿器的可行性。我们提出了一种新颖的方法,即将装有碘化钠粉末的3D打印补偿器模具结合起来。

方法

放射治疗研究计算环境(CERR)软件的逆向计划模块经过调整,以模拟XRAD - 225Cx辐照器,包括几何形状和千伏级束流质量(后者使用为XRAD - 225Cx提供的相空间文件)。针对成像与放射肿瘤学核心(IROC)头颈IMRT认证测试的缩小版本创建了九野IMRT治疗方案,该方案在直径2.2厘米的圆柱形体模上重现。在1.25×1.25毫米的分辨率下计算了包含九个射野和总共2564个束斑的优化注量图。使用聚乳酸(PLA)细丝通过3D打印为每个射野创建了一个空心补偿器模具(使用内部软件和算法)。然后用碘化钠粉末(NaI,测量密度ρ = 2.062克/立方厘米)填充模具。由于与治疗床碰撞的间隙问题,安装的补偿器模具厚度限制为13.8毫米。在治疗交付时,每个补偿器手动安装到连接到参考40×40毫米准直器的定制块托盘上。使用放射变色EBT2胶片测量了三个重复的3D打印模具之间补偿器的可重复性。将九个射野的二维(2D)剂量分布与CERR计算的2D剂量进行比较,使用伽马比较,距离一致性标准为0.5 - 毫米,剂量差异标准为3 - 5%。

结果

观察到3D打印补偿器制造具有良好的可重复性,在射束调制部分内平均误差为±0.024戈瑞,相对剂量误差为±4.2%。在13.8毫米补偿器高度的限制内,实现了91.5%的最大辐射阻挡效率。每个射野使用约45.5克碘化钠粉末。使用放射变色胶片对九个交付的IMRT射野中的每个射野进行伽马分析,结果九个治疗射野中有八个在5%/0.5毫米容差下通过率>90%。然而,在一个射野中注意到伽马通过率较低,为49 - 66%(3%/0.25毫米至5%/0.5毫米),这归因于制造误差导致模具填充过多。九野治疗计划在30分钟内完成交付,没有机械或碰撞问题。

结论

我们展示了利用装有碘化钠粉末的3D打印补偿器外壳在小动物辐照器上进行高空间分辨率IMRT治疗的可行性。使用带有碘化钠粉末的PLA模具很有吸引力,因为易于以高几何分辨率3D打印PLA模具,并且碘化钠粉末的衰减特性平衡良好,可防止模具变得过于庞大。具有1.25毫米分辨率的IMRT射野能够进行显著的注量调制,相对剂量精度为±4.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验