Suppr超能文献

散发性许旺细胞瘤中新型候选易感性基因的种系突变。

Germline Mutations for Novel Candidate Predisposition Genes in Sporadic Schwannomatosis.

机构信息

B.-J. Min, The Human Genome Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea, National Forensic Service Seoul Institute, Seoul, Republic of Korea.

Y. K. Kang, Department of Orthopaedic Surgery, Pyeongtaek St. Mary's Hospital, Gyeonggi-do, Republic of Korea.

出版信息

Clin Orthop Relat Res. 2020 Nov;478(11):2442-2450. doi: 10.1097/CORR.0000000000001239.

Abstract

BACKGROUND

Schwannomatosis is a late-onset tumor predisposition syndrome associated with the development of many different types of malignancies. A relevant genetic mechanism can be explained by three mutational events. The first-hit mutation is a germline mutation, and the SMARCB1 mutation on chromosome 22 is the most well-known genetic abnormality in patients with schwannomatosis. LZTR1 is another major predisposing gene in 22q-related schwannomatosis that lacks SMARCB1 variants. Although these two variants account for the occurrence of most familiar schwannomatoses, the genetic causes of sporadic schwannomatosis for the most part remain unknown. Therefore, current molecular diagnostic criteria cannot completely explain the basis of this disease. The common genetic background between schwannomatosis and other related malignant tumors is also unclear. Moreover, it is not easy to explain various clinical manifestations by only two known mutations. QUESTION/PURPOSES: (1) Are there important sequences outside the SMARCB1 or LZTR1 region on chromosome 22 that might carry a first-hit mutational predisposition to sporadic schwannomatosis? Or are there alternative evolutionarily conserved loci that might carry a first-hit mutational predisposition? (2) Is the age of disease onset associated to such genetic variants?

METHODS

This study was a retrospective chart review and prospective genetic study on patients with schwannomatosis who were treated surgically. The clinical criteria to diagnose schwannomatosis were as follows: (1) histologically proven nonvestibular schwannomas; (2) no evidence of vestibular schwannomas on 3-mm brain MRI. A total of 21 patients were treated between March 2006 and June 2015. Since nine patients did not visit the outpatient clinic during the recruitment period, we obtained blood samples from 12 patients with schwannomatosis for a genetic analysis. After two patients were excluded because of their family history of schwannomatosis, genetic analyses were finally performed on 10 patients. Then, those with NF2, SMARCB1 or LZTR1 variants were screened by whole exome sequencing. All 10 patients passed our screening strategy. There were eight men and two women, with a median (range) age of 43 years (24 to 66) at the time of diagnosis. To select candidate genes, common ethnic variants and frequent mutations in in-house exome sequencing data were removed to exclude the population-specific polymorphisms not found in other population and to generalize the findings. Frameshift, nonsense, and splice-site variants were deemed pathogenic. Missense variants were classified as potentially pathogenic, variants of uncertain significance, or benign using in silico (via computer simulation) prediction algorithms, Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined Annotation Dependent Depletion (CADD). A variant was considered potentially pathogenic if two or more algorithms predicted the variant to be damaging and benign if none considered it damaging. Then, potentially pathogenic variants only in the genes associated with cancer-predisposition or DNA damage repair were classified as the pathogenic candidate variants of sporadic schwannomatosis. The predictions for pathogenic candidate variants were checked again on Clinical Interpretation of Genetic Variants (InterVar) based on the American College of Medical Genetics guidelines and validated against Mendelian clinically applicable pathogenicity scores (M-CAP scores).

RESULTS

We detected 26 variants; 13 variants across 10 genes were predicted to be pathogenic and found in seven patients, two each in ARID1A, PTCH2, and NOTCH2 and one each in MSH6, ALPK2, MGMT, NOTCH1, CIC, TSC2, and CDKN2A. One frameshift deletion in PTCH2 met the criteria for pathogenic or likely pathogenic classification, as recommended by the American College of Medical Genetics guidelines. Six missense mutations were classified as possibly pathogenic variants based on M-CAP scores. Four predicted pathogenic missense variants were detected in DNA damage repair (DDR) genes. Three DDR genes were affected: ARID1A, MGMT, and MSH6. Among the nine predicted pathogenic mutations detected in known cancer-predisposing genes, one was a frameshift deletion and the others were missense mutations. Seven tumor suppressor genes were involved: PTCH2, ALPK2, CIC, NOTCH1, NOTCH2, TSC2, and CDKN2A. One patient with multiple pathogenic variants in two DDR genes, ARID1A and MSH6, received a schwannomatosis diagnosis at 33 years old. Each of the other patients who had single variants in the DDR gene received their diagnoses at 41 years of age. The age at diagnosis was 40 years or older in patients with variants in cancer-predisposing genes, except for one patient who had multiple variants in TSC2 and CDKN2A. The carrier of those variants received the diagnosis at 24 years old.

CONCLUSIONS

This study identified first-hit candidate mutations predisposing patients to schwannomatosis that were not related to SMARCB1 or LZTR1 variations in a cohort of patients with sporadic schwannomatosis. Patients with sporadic schwannomatosis without SMARCB1 or LZTR1 genetic variation may have developed the disease because of genomic variants related to cancer initiation in areas other than chromosome 22. Seven of 10 patients had predicted pathogenic germline mutations in DDR and cancer predisposition genes. We detected multiple cancer-related mutations in each patient. The age at the time schwannomatosis was diagnosed might be associated with a combination of variants and characteristics of the genes containing the variants; however, we did not have enough patients to confirm this association.

CLINICAL RELEVANCE

The germline mutations identified in this study and the ideas related to the age of disease onset may provide potential candidate variants for future research on sporadic schwannomatosis and help to revise the current clinical and molecular diagnostic criteria. Further in vivo and in vitro studies are needed for these variants.

摘要

背景

神经鞘瘤病是一种与多种恶性肿瘤发生相关的迟发性肿瘤易感性综合征。相关的遗传机制可以用三种突变事件来解释。第一个打击突变是种系突变,22 号染色体上的 SMARCB1 突变是神经鞘瘤病患者中最常见的遗传异常。LZTR1 是另一种 22q 相关神经鞘瘤病的主要易患基因,缺乏 SMARCB1 变异。尽管这两种变异体解释了大多数常见的神经鞘瘤病,但散发性神经鞘瘤病的遗传原因在很大程度上仍不清楚。因此,目前的分子诊断标准不能完全解释这种疾病的基础。神经鞘瘤病和其他相关恶性肿瘤之间的常见遗传背景也不清楚。此外,仅通过两种已知的突变很难解释各种临床表现。问题/目的:(1)在染色体 22 上的 SMARCB1 或 LZTR1 区域之外是否存在可能导致散发性神经鞘瘤病的第一个打击突变易感性的重要序列?或者是否存在替代的进化保守基因座,可能携带第一个打击突变易感性?(2)疾病发病年龄与这些遗传变异有关吗?

方法

本研究是一项对接受手术治疗的神经鞘瘤病患者进行回顾性病历分析和前瞻性遗传研究。诊断神经鞘瘤病的临床标准如下:(1)组织学证实为非前庭神经鞘瘤;(2)3mm 脑 MRI 上无前庭神经鞘瘤证据。2006 年 3 月至 2015 年 6 月期间共治疗了 21 名患者。由于在招募期间有 9 名患者未到门诊就诊,我们从 12 名神经鞘瘤病患者中采集了血液样本进行遗传分析。两名患者因家族性神经鞘瘤病病史被排除后,对 10 名患者进行了遗传分析。然后,对 NF2、SMARCB1 或 LZTR1 变异体进行了全外显子组测序。所有 10 名患者均通过了我们的筛选策略。其中 8 名男性,2 名女性,中位年龄为 43 岁(24-66 岁)。为了选择候选基因,去除了常见的种系变异和内源性外显子测序数据中的常见突变,以排除在其他人群中未发现的人群特异性多态性,并推广发现结果。移码、无义和剪接位点变异被认为是致病性的。错义变异被归类为潜在致病性、意义不明的变异或良性,使用计算机模拟(通过计算机模拟)预测算法 Sorting Intolerant From Tolerant (SIFT)、Polymorphism Phenotyping v2 (PolyPhen-2) 和 Combined Annotation Dependent Depletion (CADD)。如果两种或两种以上算法预测变异为有害,则认为变异为潜在致病性,如果没有算法认为变异为有害,则认为变异为良性。然后,仅将与癌症易感性或 DNA 损伤修复相关的基因中的潜在致病性变异体归类为散发性神经鞘瘤病的致病性候选变异体。根据美国医学遗传学学院的指南,再次检查致病性候选变异体的预测结果,并通过基于 Mendelian 临床适用致病性评分(M-CAP)的临床遗传变异解释(InterVar)进行验证。

结果

我们检测到 26 个变异体;10 个基因中有 13 个变异体被预测为致病性,并在 7 名患者中发现,2 名患者分别在 ARID1A、PTCH2 和 NOTCH2 中发现,1 名患者分别在 MSH6、ALPK2、MGMT、NOTCH1、CIC、TSC2 和 CDKN2A 中发现。PTCH2 中的一个移码缺失符合美国医学遗传学学院指南推荐的致病性或可能致病性分类标准。根据 M-CAP 评分,6 个错义突变被归类为可能致病性变异体。在 DNA 损伤修复(DDR)基因中检测到 4 个预测的致病性错义突变。ARID1A、MGMT 和 MSH6 三个基因受到影响。在 9 个已知的致癌易感性基因中发现的 7 个肿瘤抑制基因的致病性突变中,一个是移码缺失,其余是错义突变。PTCH2、ALPK2、CIC、NOTCH1、NOTCH2、TSC2 和 CDKN2A 共 7 个肿瘤抑制基因。一名携带两个 DDR 基因 ARID1A 和 MSH6 致病性变异的患者在 33 岁时被诊断为神经鞘瘤病。其他携带 DDR 基因单一变异的患者均在 41 岁时被诊断。在携带癌症易感性基因变异的患者中,除了一名携带 TSC2 和 CDKN2A 多个变异的患者外,发病年龄在 40 岁或以上。该患者在 24 岁时被诊断为神经鞘瘤病。

结论

本研究在一组散发性神经鞘瘤病患者中发现了与 SMARCB1 或 LZTR1 变异无关的导致神经鞘瘤病的第一个打击候选突变。没有 SMARCB1 或 LZTR1 遗传变异的散发性神经鞘瘤病患者可能是由于染色体 22 以外的与癌症起始相关的基因组变异而发展为该疾病。10 名患者中有 7 名患者的 DDR 和癌症易感性基因中存在预测的致病性种系突变。我们在每个患者中都检测到了多个与癌症相关的突变。神经鞘瘤病的发病年龄可能与变异体的特征以及包含变异体的基因的特征有关;然而,我们没有足够的患者来确认这种关联。

临床意义

本研究中鉴定的种系突变和与发病年龄相关的概念可能为散发性神经鞘瘤病提供潜在的候选变异体,有助于修订目前的临床和分子诊断标准。还需要进一步的体内和体外研究这些变异体。

相似文献

1
Germline Mutations for Novel Candidate Predisposition Genes in Sporadic Schwannomatosis.
Clin Orthop Relat Res. 2020 Nov;478(11):2442-2450. doi: 10.1097/CORR.0000000000001239.
2
Phenotypic and genotypic overlap between mosaic NF2 and schwannomatosis in patients with multiple non-intradermal schwannomas.
Hum Genet. 2018 Jul;137(6-7):543-552. doi: 10.1007/s00439-018-1909-9. Epub 2018 Jul 13.
4
Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis.
Neurology. 2015 Jan 13;84(2):141-7. doi: 10.1212/WNL.0000000000001129. Epub 2014 Dec 5.
5
Expanding the mutational spectrum of LZTR1 in schwannomatosis.
Eur J Hum Genet. 2015 Jul;23(7):963-8. doi: 10.1038/ejhg.2014.220. Epub 2014 Oct 22.
9
Pain correlates with germline mutation in schwannomatosis.
Medicine (Baltimore). 2018 Feb;97(5):e9717. doi: 10.1097/MD.0000000000009717.
10
SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis.
BMC Neurol. 2011 Jan 24;11:9. doi: 10.1186/1471-2377-11-9.

引用本文的文献

2
Recurrent schwannomatosis with mosaic SMARCB1 loss: A case report.
Exp Ther Med. 2025 May 27;30(1):147. doi: 10.3892/etm.2025.12897. eCollection 2025 Jul.
3
The evolving landscape of NF gene therapy: Hurdles and opportunities.
Mol Ther Nucleic Acids. 2025 Feb 3;36(1):102475. doi: 10.1016/j.omtn.2025.102475. eCollection 2025 Mar 11.
5
Update on Cancer Predisposition Syndromes and Surveillance Guidelines for Childhood Brain Tumors.
Clin Cancer Res. 2024 Jun 3;30(11):2342-2350. doi: 10.1158/1078-0432.CCR-23-4033.
6
Screening of potential novel candidate genes in schwannomatosis patients.
Hum Mutat. 2022 Oct;43(10):1368-1376. doi: 10.1002/humu.24424. Epub 2022 Jun 27.
7
Neurofibromatosis in Children: Actually and Perspectives.
Children (Basel). 2022 Jan 2;9(1):40. doi: 10.3390/children9010040.

本文引用的文献

1
Creation of an international registry to support discovery in schwannomatosis.
Am J Med Genet A. 2017 Feb;173(2):407-413. doi: 10.1002/ajmg.a.38024. Epub 2016 Oct 19.
2
The genomic landscape of schwannoma.
Nat Genet. 2016 Nov;48(11):1339-1348. doi: 10.1038/ng.3688. Epub 2016 Oct 10.
3
Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer.
EBioMedicine. 2016 Jun;8:30-39. doi: 10.1016/j.ebiom.2016.04.017. Epub 2016 May 3.
4
Structure and function of the nucleosome-binding PWWP domain.
Trends Biochem Sci. 2014 Nov;39(11):536-47. doi: 10.1016/j.tibs.2014.09.001. Epub 2014 Sep 29.
5
Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas.
Nat Genet. 2014 Feb;46(2):182-7. doi: 10.1038/ng.2855. Epub 2013 Dec 22.
6
Update from the 2011 International Schwannomatosis Workshop: From genetics to diagnostic criteria.
Am J Med Genet A. 2013 Mar;161A(3):405-16. doi: 10.1002/ajmg.a.35760. Epub 2013 Feb 7.
7
Clinical features of schwannomatosis: a retrospective analysis of 87 patients.
Oncologist. 2012;17(10):1317-22. doi: 10.1634/theoncologist.2012-0162. Epub 2012 Aug 27.
8
Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis.
Neurogenetics. 2012 May;13(2):141-5. doi: 10.1007/s10048-012-0319-8. Epub 2012 Mar 22.
10
Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms.
Acta Neuropathol. 2012 Mar;123(3):321-48. doi: 10.1007/s00401-011-0928-6. Epub 2011 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验