Bodesheim David, Kieslich Gregor, Johnson Mike, Butler Keith T
Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany.
ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
J Phys Chem Lett. 2020 May 7;11(9):3495-3500. doi: 10.1021/acs.jpclett.0c00817. Epub 2020 Apr 21.
Hydrogen bonds are of great scientific interest, determining the free energy landscape and hence chemical and physical properties of many materials systems, for example, the hybrid organic-inorganic perovskites. Although these interactions are critical, understanding them is difficult in complex, multicomponent systems; hydrogen halides are ideal as simple binary model compounds for understanding the role of hydrogen bonding in physical properties like phase transitions. Here we investigate the orthorhombic low-temperature phase and the cubic high-temperature phase in HX (X = F, Cl, Br, or I) systems to understand how different hydrogen-halide bonds influence free energy profiles. We show that hydrogen fluoride has a qualitatively different behavior due to strong hydrogen bonding and hence a very different vibrational entropy. Heavier halides are in contrast rather similar in their physical properties; however, dispersion interactions play a more crucial role in these. These results have implications for the rational design of materials with hydrogen-halide bonds and tuning material properties in systems like mixed anion CHNHPbX perovskites.
氢键具有重大的科学意义,它决定了自由能态势,进而决定了许多材料体系的化学和物理性质,例如有机-无机杂化钙钛矿。尽管这些相互作用至关重要,但在复杂的多组分体系中理解它们却很困难;卤化氢作为简单的二元模型化合物,对于理解氢键在诸如相变等物理性质中的作用非常理想。在此,我们研究HX(X = F、Cl、Br或I)体系中的正交低温相和立方高温相,以了解不同的卤化氢键如何影响自由能分布。我们表明,由于强氢键作用,氟化氢具有定性不同的行为,因此其振动熵也非常不同。相比之下,较重的卤化物在物理性质上较为相似;然而,色散相互作用在这些卤化物中起着更为关键的作用。这些结果对于合理设计具有卤化氢键的材料以及调节混合阴离子CHNHPbX钙钛矿等体系中的材料性质具有重要意义。