Suppr超能文献

在图形处理器上加速B样条插值:在医学图像配准中的应用

Accelerating B-spline interpolation on GPUs: Application to medical image registration.

作者信息

Zachariadis Orestis, Teatini Andrea, Satpute Nitin, Gómez-Luna Juan, Mutlu Onur, Elle Ole Jakob, Olivares Joaquín

机构信息

Department of Electronics and Computer Engineering, Universidad de Cordoba, Córdoba, Spain.

The Intervention Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Department of Informatics, University of Oslo, Oslo, Norway.

出版信息

Comput Methods Programs Biomed. 2020 Sep;193:105431. doi: 10.1016/j.cmpb.2020.105431. Epub 2020 Mar 3.

Abstract

BACKGROUND AND OBJECTIVE

B-spline interpolation (BSI) is a popular technique in the context of medical imaging due to its adaptability and robustness in 3D object modeling. A field that utilizes BSI is Image Guided Surgery (IGS). IGS provides navigation using medical images, which can be segmented and reconstructed into 3D models, often through BSI. Image registration tasks also use BSI to transform medical imaging data collected before the surgery and intra-operative data collected during the surgery into a common coordinate space. However, such IGS tasks are computationally demanding, especially when applied to 3D medical images, due to the complexity and amount of data involved. Therefore, optimization of IGS algorithms is greatly desirable, for example, to perform image registration tasks intra-operatively and to enable real-time applications. A traditional CPU does not have sufficient computing power to achieve these goals and, thus, it is preferable to rely on GPUs. In this paper, we introduce a novel GPU implementation of BSI to accelerate the calculation of the deformation field in non-rigid image registration algorithms.

METHODS

Our BSI implementation on GPUs minimizes the data that needs to be moved between memory and processing cores during loading of the input grid, and leverages the large on-chip GPU register file for reuse of input values. Moreover, we re-formulate our method as trilinear interpolations to reduce computational complexity and increase accuracy. To provide pre-clinical validation of our method and demonstrate its benefits in medical applications, we integrate our improved BSI into a registration workflow for compensation of liver deformation (caused by pneumoperitoneum, i.e., inflation of the abdomen) and evaluate its performance.

RESULTS

Our approach improves the performance of BSI by an average of 6.5×  and interpolation accuracy by 2×  compared to three state-of-the-art GPU implementations. Through pre-clinical validation, we demonstrate that our optimized interpolation accelerates a non-rigid image registration algorithm, which is based on the Free Form Deformation (FFD) method, by up to 34%.

CONCLUSION

Our study shows that we can achieve significant performance and accuracy gains with our novel parallelization scheme that makes effective use of the GPU resources. We show that our method improves the performance of real medical imaging registration applications used in practice today.

摘要

背景与目的

B样条插值(BSI)在医学成像领域是一种常用技术,因其在三维物体建模中的适应性和稳健性。图像引导手术(IGS)是利用BSI的一个领域。IGS利用医学图像提供导航,这些图像通常可通过BSI进行分割并重建为三维模型。图像配准任务也使用BSI将手术前收集的医学成像数据和手术中收集的术中数据转换到一个公共坐标空间。然而,由于所涉及数据的复杂性和数量,此类IGS任务对计算要求很高,尤其是应用于三维医学图像时。因此,非常需要优化IGS算法,例如,在术中执行图像配准任务并实现实时应用。传统的中央处理器(CPU)没有足够的计算能力来实现这些目标,因此,最好依赖图形处理器(GPU)。在本文中,我们介绍了一种新颖的BSI的GPU实现方式,以加速非刚性图像配准算法中变形场的计算。

方法

我们在GPU上实现的BSI在加载输入网格期间尽量减少需要在内存和处理核心之间移动的数据,并利用GPU上较大的片上寄存器文件来重用输入值。此外,我们将方法重新表述为三线性插值,以降低计算复杂度并提高精度。为了对我们的方法进行临床前验证并证明其在医学应用中的优势,我们将改进后的BSI集成到用于补偿肝脏变形(由气腹,即腹部充气引起)的配准工作流程中,并评估其性能。

结果

与三种最先进的GPU实现方式相比,我们的方法将BSI的性能平均提高了6.5倍,插值精度提高了2倍。通过临床前验证,我们证明了我们优化后的插值加速了基于自由形式变形(FFD)方法的非刚性图像配准算法,加速幅度高达34%。

结论

我们的研究表明,通过有效利用GPU资源的新颖并行化方案,我们可以在性能和精度上取得显著提升。我们表明,我们的方法提高了当今实际应用中的真实医学成像配准应用的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验