Suppr超能文献

感知运动期望偏差会影响观察物体提升时的运动共鸣:顶颞联合区的因果作用。

Sensorimotor Expectations Bias Motor Resonance during Observation of Object Lifting: The Causal Role of pSTS.

机构信息

Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, 3001, Belgium

KU Leuven, Leuven Brain Institute, Leuven, 3001, Belgium.

出版信息

J Neurosci. 2020 May 13;40(20):3995-4009. doi: 10.1523/JNEUROSCI.2672-19.2020. Epub 2020 Apr 13.

Abstract

Transcranial magnetic stimulation studies have highlighted that corticospinal excitability is increased during observation of object lifting, an effect termed "motor resonance." This facilitation is driven by movement features indicative of object weight, such as object size or observed movement kinematics. Here, we investigated in 35 humans (23 females) how motor resonance is altered when the observer's weight expectations, based on visual information, do not match the actual object weight as revealed by the observed movement kinematics. Our results highlight that motor resonance is not robustly driven by object weight but easily masked by a suppressive mechanism reflecting the correctness of weight expectations. Subsequently, we investigated in 24 humans (14 females) whether this suppressive mechanism was driven by higher-order cortical areas. For this, we induced "virtual lesions" to either the posterior superior temporal sulcus (pSTS) or dorsolateral prefrontal cortex (DLPFC) before having participants perform the task. Importantly, virtual lesion of pSTS eradicated this suppressive mechanism and restored object weight-driven motor resonance. In addition, DLPFC virtual lesion eradicated any modulation of motor resonance. This indicates that motor resonance is heavily mediated by top-down inputs from both pSTS and DLPFC. Together, these findings shed new light on the theorized cortical network driving motor resonance. That is, our findings highlight that motor resonance is not only driven by the putative human mirror neuron network consisting of the primary motor and premotor cortices as well as the anterior intraparietal sulcus, but also by top-down input from pSTS and DLPFC. Observation of object lifting activates the observer's motor system in a weight-specific fashion: Corticospinal excitability is larger when observing lifts of heavy objects compared with light ones. Interestingly, here we demonstrate that this weight-driven modulation of corticospinal excitability is easily suppressed by the observer's expectations about object weight and that this suppression is mediated by the posterior superior temporal sulcus. Thus, our findings show that modulation of corticospinal excitability during observed object lifting is not robust but easily altered by top-down cognitive processes. Finally, our results also indicate how cortical inputs, originating remotely from motor pathways and processing action observation, overlap with bottom-up motor resonance effects.

摘要

经颅磁刺激研究表明,在观察物体提起时,皮质脊髓兴奋性会增加,这种效应被称为“运动共鸣”。这种促进作用是由指示物体重量的运动特征驱动的,例如物体大小或观察到的运动运动学。在这里,我们在 35 名人类(23 名女性)中研究了当观察者的体重期望基于视觉信息与观察到的运动运动学揭示的实际物体重量不匹配时,运动共鸣如何发生变化。我们的结果强调,运动共鸣不是由物体重量驱动的,而是很容易被反映出体重期望正确性的抑制机制所掩盖。随后,我们在 24 名人类(14 名女性)中研究了这种抑制机制是否由更高阶的皮质区域驱动。为此,我们在参与者执行任务之前,对后上颞叶皮质(pSTS)或背外侧前额叶皮质(DLPFC)进行了“虚拟损伤”。重要的是,pSTS 的虚拟损伤消除了这种抑制机制,并恢复了物体重量驱动的运动共鸣。此外,DLPFC 的虚拟损伤消除了运动共鸣的任何调制。这表明运动共鸣受到来自 pSTS 和 DLPFC 的自上而下输入的强烈调节。总的来说,这些发现为驱动运动共鸣的理论皮质网络提供了新的见解。也就是说,我们的发现强调,运动共鸣不仅由包含初级运动皮质和运动前皮质以及前内顶叶沟的假定人类镜像神经元网络驱动,而且还由来自 pSTS 和 DLPFC 的自上而下输入驱动。观察物体提起会以特定于重量的方式激活观察者的运动系统:与观察轻物体相比,观察重物体时皮质脊髓兴奋性更大。有趣的是,在这里我们证明,这种皮质脊髓兴奋性的重量驱动调制很容易被观察者对物体重量的期望所抑制,而这种抑制是由后上颞叶皮质介导的。因此,我们的研究结果表明,在观察物体提起期间,皮质脊髓兴奋性的调制不是稳健的,而是很容易受到自上而下的认知过程的影响。最后,我们的结果还表明,起源于远离运动途径并处理动作观察的皮质输入如何与自下而上的运动共鸣效应重叠。

相似文献

6
Motor resonance is modulated by an object's weight distribution.运动反应会受到物体重量分布的调节。
Neuropsychologia. 2021 Jun 18;156:107836. doi: 10.1016/j.neuropsychologia.2021.107836. Epub 2021 Mar 26.

本文引用的文献

2
Low or High-Level Motor Coding? The Role of Stimulus Complexity.低级还是高级运动编码?刺激复杂性的作用。
Front Hum Neurosci. 2019 Oct 11;13:332. doi: 10.3389/fnhum.2019.00332. eCollection 2019.
5
The extended object-grasping network.扩展的物体抓取网络。
Exp Brain Res. 2017 Oct;235(10):2903-2916. doi: 10.1007/s00221-017-5007-3. Epub 2017 Jul 26.
7
The Role of the Prefrontal Cortex in Action Perception.前额叶皮层在动作感知中的作用。
Cereb Cortex. 2017 Oct 1;27(10):4677-4690. doi: 10.1093/cercor/bhw261.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验