Xu Xin, Liu Yuzi, Wang Jie, Isheim Dieter, Dravid Vinayak P, Phatak Charudatta, Haile Sossina M
Program of Applied Physics, Northwestern University, Evanston, IL, USA.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
Nat Mater. 2020 Aug;19(8):887-893. doi: 10.1038/s41563-020-0656-1. Epub 2020 Apr 13.
A number of grain boundary phenomena in ionic materials, in particular, anomalous (either depressed or enhanced) charge transport, have been attributed to space charge effects. Developing effective strategies to manipulate transport behaviour requires deep knowledge of the origins of the interfacial charge, as well as its variability within a polycrystalline sample with millions of unique grain boundaries. Electron holography is a powerful technique uniquely suited for studying the electric potential profile at individual grain boundaries, whereas atom-probe tomography provides access to the chemical identify of essentially every atom at individual grain boundaries. Using these two techniques, we show here that the space charge potential at grain boundaries in lightly doped, high-purity ceria can vary by almost an order of magnitude. We further find that trace impurities (<25 ppm), rather than inherent thermodynamic factors, may be the ultimate source of grain boundary charge. These insights suggest chemical tunability of grain boundary transport properties.
离子材料中的许多晶界现象,特别是反常(降低或增强)的电荷传输,都归因于空间电荷效应。制定有效的策略来控制传输行为需要深入了解界面电荷的起源,以及其在具有数百万个独特晶界的多晶样品中的变化情况。电子全息术是一种强大的技术,特别适合研究单个晶界处的电势分布,而原子探针断层扫描则能够确定单个晶界处几乎每个原子的化学身份。利用这两种技术,我们在此表明,轻度掺杂的高纯度二氧化铈中晶界处的空间电荷电势可能会有近一个数量级的变化。我们进一步发现,痕量杂质(<25 ppm)而非内在的热力学因素,可能是晶界电荷的最终来源。这些见解表明晶界传输性质具有化学可调性。