Wang Chuang, Gao Jian, Zhao Jing-Geng, Yan Du-Juan, Zhu Xiao-Dong
State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.
Small. 2020 May;16(18):e1907091. doi: 10.1002/smll.201907091. Epub 2020 Apr 13.
The electrochemical nitrogen reduction reaction (NRR) is a promising strategy of nitrogen fixation into ammonia under ambient conditions. However, the development of electrochemical NRR is highly bottlenecked by the expensive noble metal catalysts. As a representative 2D nonmetallic material, black phosphorus (BP) has the valence electron structure similar to nitrogen, which can effectively adsorb the inactive nitrogen molecule and activate its triple bond. In addition, the relatively weak hydrogen adsorption can restrict the competitive and vigorous hydrogen evolution reaction. Herein, ultrafine BP quantum dots (QDs) are prepared via liquid-phase exfoliation and then assembled on catalytically active MnO nanosheets through van der Waals interactions. The obtained BP QDs/MnO catalyst demonstrates admirable synergetic effects in electrochemical NRR. The monodisperse BP QDs providing major activity manifest excellent ammonia production steadily with high selectivity, which benefits from the robust confinement of the BP QDs on the wrinkled MnO nanosheets with decent activity. A high ammonia yield rate of 25.3 µg h mg and faradic efficiency of 6.7% can be achieved at -0.5 V (vs RHE) in 0.1 m Na SO electrolyte, which are dramatically superior to either component. The isotopic labelling and other control tests further exclude the external contamination possibility and attest the genuine activity.
电化学氮还原反应(NRR)是在环境条件下将氮固定为氨的一种有前景的策略。然而,电化学NRR的发展受到昂贵的贵金属催化剂的严重制约。作为一种典型的二维非金属材料,黑磷(BP)具有与氮相似的价电子结构,能够有效吸附惰性氮分子并激活其叁键。此外,相对较弱的氢吸附可以抑制竞争性的剧烈析氢反应。在此,通过液相剥离制备了超细微的BP量子点(QDs),然后通过范德华相互作用将其组装在具有催化活性的MnO纳米片上。所制备的BP QDs/MnO催化剂在电化学NRR中表现出令人钦佩的协同效应。提供主要活性的单分散BP QDs表现出优异的氨生成能力,具有高选择性且产量稳定,这得益于BP QDs牢固地限制在具有良好活性的褶皱MnO纳米片上。在0.1 m Na₂SO₄电解液中,在-0.5 V(相对于可逆氢电极)下可实现25.3 µg h mg⁻¹的高氨产率和6.7%的法拉第效率,这显著优于任何一种组分。同位素标记和其他对照测试进一步排除了外部污染的可能性,并证实了其真实活性。