Meyers Primary Care Institute (A Joint Endeavor of the University of Massachusetts Medical School, Reliant Medical Group, and Fallon Health), Worcester, Massachusetts.
Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.
Health Serv Res. 2020 Aug;55(4):568-577. doi: 10.1111/1475-6773.13290. Epub 2020 Apr 14.
To develop a cardiovascular disease (CVD) risk score that can be used to quantify CVD risk in the Medicare Current Beneficiary Survey (MCBS).
We used 1999-2013 MCBS data.
We used a backward stepwise approach and cox proportional hazards regressions to build and validate a new CVD risk score, similar to the Framingham Risk Score (FRS), using only information available in MCBS. To assess its performance, we calculated C statistics and examined calibration plots.
DATA COLLECTION/EXTRACTION METHODS: We studied 21 968 community-dwelling Medicare beneficiaries aged 65 years or older without pre-existing CVD. We obtained risk factors from both survey and claims data. We used claims data to derive "CVD event within 3 years" following the FRS definition of CVD.
About five percent of MCBS participants developed a CVD event over a mean follow-up period of 348 days. Our final MCBS-based model added morbidity burden, reported general health status, and functional limitation to the traditional FRS predictors of CVD. This model had relatively fair discrimination (C statistic = 0.69; 95% confidence interval [CI], 0.67-0.71) and performed well on validation (C = 0.68; CI, 0.66-0.70). More importantly, the plot of observed CVD outcomes versus predicted ones showed that this model had a good calibration.
Our new CVD risk score can be calculated using MCBS data, thereby extending the survey's ability to quantify CVD risk in the Medicare population and better inform both health policy and health services research.
开发一种心血管疾病(CVD)风险评分,用于量化医疗保险当前受益人调查(MCBS)中的 CVD 风险。
我们使用了 1999-2013 年 MCBS 数据。
我们使用向后逐步方法和 Cox 比例风险回归,使用仅在 MCBS 中可用的信息,构建和验证类似于 Framingham 风险评分(FRS)的新 CVD 风险评分。为了评估其性能,我们计算了 C 统计量并检查了校准图。
数据收集/提取方法:我们研究了 21968 名居住在社区的 65 岁或以上、无预先存在的 CVD 的医疗保险受益人。我们从调查和索赔数据中获取了危险因素。我们使用索赔数据根据 CVD 的 FRS 定义得出“三年内发生 CVD 事件”。
在平均 348 天的随访期间,约 5%的 MCBS 参与者发生了 CVD 事件。我们最终的基于 MCBS 的模型将发病负担、报告的总体健康状况和功能限制添加到 CVD 的传统 FRS 预测因素中。该模型具有相对较好的区分度(C 统计量=0.69;95%置信区间[CI],0.67-0.71),在验证中表现良好(C=0.68;CI,0.66-0.70)。更重要的是,观察到的 CVD 结果与预测结果的图表明该模型具有良好的校准度。
我们的新 CVD 风险评分可以使用 MCBS 数据计算,从而扩展了该调查在医疗保险人群中量化 CVD 风险的能力,并为健康政策和卫生服务研究提供更好的信息。