Suppr超能文献

一种用于医疗保险当前受益人大调查的心血管疾病风险预测算法。

A cardiovascular disease risk prediction algorithm for use with the Medicare current beneficiary survey.

机构信息

Meyers Primary Care Institute (A Joint Endeavor of the University of Massachusetts Medical School, Reliant Medical Group, and Fallon Health), Worcester, Massachusetts.

Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.

出版信息

Health Serv Res. 2020 Aug;55(4):568-577. doi: 10.1111/1475-6773.13290. Epub 2020 Apr 14.

Abstract

OBJECTIVE

To develop a cardiovascular disease (CVD) risk score that can be used to quantify CVD risk in the Medicare Current Beneficiary Survey (MCBS).

DATA SOURCES

We used 1999-2013 MCBS data.

STUDY DESIGN

We used a backward stepwise approach and cox proportional hazards regressions to build and validate a new CVD risk score, similar to the Framingham Risk Score (FRS), using only information available in MCBS. To assess its performance, we calculated C statistics and examined calibration plots.

DATA COLLECTION/EXTRACTION METHODS: We studied 21 968 community-dwelling Medicare beneficiaries aged 65 years or older without pre-existing CVD. We obtained risk factors from both survey and claims data. We used claims data to derive "CVD event within 3 years" following the FRS definition of CVD.

PRINCIPAL FINDINGS

About five percent of MCBS participants developed a CVD event over a mean follow-up period of 348 days. Our final MCBS-based model added morbidity burden, reported general health status, and functional limitation to the traditional FRS predictors of CVD. This model had relatively fair discrimination (C statistic = 0.69; 95% confidence interval [CI], 0.67-0.71) and performed well on validation (C = 0.68; CI, 0.66-0.70). More importantly, the plot of observed CVD outcomes versus predicted ones showed that this model had a good calibration.

CONCLUSIONS

Our new CVD risk score can be calculated using MCBS data, thereby extending the survey's ability to quantify CVD risk in the Medicare population and better inform both health policy and health services research.

摘要

目的

开发一种心血管疾病(CVD)风险评分,用于量化医疗保险当前受益人调查(MCBS)中的 CVD 风险。

数据来源

我们使用了 1999-2013 年 MCBS 数据。

研究设计

我们使用向后逐步方法和 Cox 比例风险回归,使用仅在 MCBS 中可用的信息,构建和验证类似于 Framingham 风险评分(FRS)的新 CVD 风险评分。为了评估其性能,我们计算了 C 统计量并检查了校准图。

数据收集/提取方法:我们研究了 21968 名居住在社区的 65 岁或以上、无预先存在的 CVD 的医疗保险受益人。我们从调查和索赔数据中获取了危险因素。我们使用索赔数据根据 CVD 的 FRS 定义得出“三年内发生 CVD 事件”。

主要发现

在平均 348 天的随访期间,约 5%的 MCBS 参与者发生了 CVD 事件。我们最终的基于 MCBS 的模型将发病负担、报告的总体健康状况和功能限制添加到 CVD 的传统 FRS 预测因素中。该模型具有相对较好的区分度(C 统计量=0.69;95%置信区间[CI],0.67-0.71),在验证中表现良好(C=0.68;CI,0.66-0.70)。更重要的是,观察到的 CVD 结果与预测结果的图表明该模型具有良好的校准度。

结论

我们的新 CVD 风险评分可以使用 MCBS 数据计算,从而扩展了该调查在医疗保险人群中量化 CVD 风险的能力,并为健康政策和卫生服务研究提供更好的信息。

相似文献

1
A cardiovascular disease risk prediction algorithm for use with the Medicare current beneficiary survey.
Health Serv Res. 2020 Aug;55(4):568-577. doi: 10.1111/1475-6773.13290. Epub 2020 Apr 14.
2
3
Using the Medicare Current Beneficiary Survey to conduct research on Medicare-eligible veterans.
J Rehabil Res Dev. 2010;47(8):797-813. doi: 10.1682/jrrd.2009.10.0174.

引用本文的文献

本文引用的文献

1
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association.
Circulation. 2017 Mar 7;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485. Epub 2017 Jan 25.
2
Information bias in health research: definition, pitfalls, and adjustment methods.
J Multidiscip Healthc. 2016 May 4;9:211-7. doi: 10.2147/JMDH.S104807. eCollection 2016.
3
Trends in acute myocardial infarction hospitalizations: Are we seeing the whole picture?
Am Heart J. 2015 Dec;170(6):1211-9. doi: 10.1016/j.ahj.2015.09.009. Epub 2015 Sep 21.
5
Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations.
JAMA. 2014 Apr 9;311(14):1406-15. doi: 10.1001/jama.2014.2630.
7
Simulated value-based insurance design applied to statin use by Medicare beneficiaries with diabetes.
Value Health. 2012 May;15(3):404-11. doi: 10.1016/j.jval.2012.01.008. Epub 2012 Apr 10.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验