Suppr超能文献

基于靶点的促肌动蛋白类似物设计确定了琥珀酸脱氢酶中一个新的假定结合裂隙。

Target-Based Design of Promysalin Analogues Identifies a New Putative Binding Cleft in Succinate Dehydrogenase.

作者信息

Post Savannah J, Keohane Colleen E, Rossiter Lauren M, Kaplan Anna R, Khowsathit Jittasak, Matuska Katie, Karanicolas John, Wuest William M

机构信息

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.

出版信息

ACS Infect Dis. 2020 Jun 12;6(6):1372-1377. doi: 10.1021/acsinfecdis.0c00024. Epub 2020 Apr 14.

Abstract

Promysalin is a small-molecule natural product that specifically inhibits growth of the Gram-negative pathogen (). This activity holds promise in the treatment of multidrug resistant infections found in immunocompromised patients with chronic illnesses, such as cystic fibrosis. In 2015, our lab completed the first total synthesis; subsequent analogue design and SAR investigation enabled identification of succinate dehydrogenase (Sdh) as the biological target in . Herein, we report the target-guided design of new promysalin analogues with varying alkyl chains, one of which is on par with our most potent analogue to date. Computational docking revealed that some analogues have a different orientation in the Sdh binding pocket, placing the terminal carbon proximal to a tryptophan residue. This inspired the design of an extended side chain analogue bearing a terminal phenyl moiety, providing a basis for the design of future analogues.

摘要

普罗米萨林是一种小分子天然产物,它能特异性抑制革兰氏阴性病原体()的生长。这种活性在治疗患有慢性疾病(如囊性纤维化)的免疫功能低下患者中发现的多重耐药感染方面具有前景。2015年,我们实验室完成了首次全合成;随后的类似物设计和构效关系研究使得能够确定琥珀酸脱氢酶(Sdh)为()中的生物学靶点。在此,我们报告了具有不同烷基链的新型普罗米萨林类似物的靶点导向设计,其中一种与我们迄今为止最有效的类似物相当。计算对接表明,一些类似物在Sdh结合口袋中有不同的取向,使末端碳靠近一个色氨酸残基。这激发了带有末端苯基部分的延长侧链类似物的设计,为未来类似物的设计提供了基础。

相似文献

1
Target-Based Design of Promysalin Analogues Identifies a New Putative Binding Cleft in Succinate Dehydrogenase.
ACS Infect Dis. 2020 Jun 12;6(6):1372-1377. doi: 10.1021/acsinfecdis.0c00024. Epub 2020 Apr 14.
2
Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.
J Am Chem Soc. 2018 Feb 7;140(5):1774-1782. doi: 10.1021/jacs.7b11212. Epub 2018 Jan 24.
3
Enzymatic reconstitution of salicylate formation in promysalin biosynthesis.
Bioorg Med Chem Lett. 2023 Oct 1;94:129440. doi: 10.1016/j.bmcl.2023.129440. Epub 2023 Aug 9.
4
Structure-Based Design of Promysalin Analogues to Overcome Mechanisms of Bacterial Resistance.
ACS Omega. 2023 Mar 22;8(13):12558-12564. doi: 10.1021/acsomega.3c00884. eCollection 2023 Apr 4.
6
Total synthesis and biological investigation of (-)-promysalin.
J Am Chem Soc. 2015 Jun 17;137(23):7314-7. doi: 10.1021/jacs.5b04767. Epub 2015 Jun 5.
8
Transcriptomic Profiling Suggests That Promysalin Alters the Metabolic Flux, Motility, and Iron Regulation in Pseudomonas putida KT2440.
ACS Infect Dis. 2018 Aug 10;4(8):1179-1187. doi: 10.1021/acsinfecdis.8b00041. Epub 2018 Jun 5.
9
Correction to "Target-Based Design of Promysalin Analogs Identifies a New Putative Binding Cleft in Succinate Dehydrogenase".
ACS Infect Dis. 2022 Jul 8;8(7):1376. doi: 10.1021/acsinfecdis.2c00256. Epub 2022 Jun 6.

引用本文的文献

2
Target-Guided Design and Synthesis of Aryl-Functionalized Promysalin Analogs.
Chembiochem. 2025 May 27;26(10):e202401030. doi: 10.1002/cbic.202401030. Epub 2025 Apr 4.
3
Innovative perspectives on the discovery of small molecule antibiotics.
NPJ Antimicrob Resist. 2025 Mar 13;3(1):19. doi: 10.1038/s44259-025-00089-0.
4
Investigating the Role of Metabolism for Antibiotic Combination Therapies in .
ACS Infect Dis. 2023 Dec 8;9(12):2386-2393. doi: 10.1021/acsinfecdis.3c00452. Epub 2023 Nov 8.
5
Structure-Based Design of Promysalin Analogues to Overcome Mechanisms of Bacterial Resistance.
ACS Omega. 2023 Mar 22;8(13):12558-12564. doi: 10.1021/acsomega.3c00884. eCollection 2023 Apr 4.

本文引用的文献

1
Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance.
J Med Chem. 2019 Sep 12;62(17):7618-7642. doi: 10.1021/acs.jmedchem.9b00370. Epub 2019 Apr 18.
2
Transcriptomic Profiling Suggests That Promysalin Alters the Metabolic Flux, Motility, and Iron Regulation in Pseudomonas putida KT2440.
ACS Infect Dis. 2018 Aug 10;4(8):1179-1187. doi: 10.1021/acsinfecdis.8b00041. Epub 2018 Jun 5.
3
Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.
J Am Chem Soc. 2018 Feb 7;140(5):1774-1782. doi: 10.1021/jacs.7b11212. Epub 2018 Jan 24.
4
Natural Products as Platforms To Overcome Antibiotic Resistance.
Chem Rev. 2017 Oct 11;117(19):12415-12474. doi: 10.1021/acs.chemrev.7b00283. Epub 2017 Sep 27.
6
Chemical Strategies To Target Bacterial Virulence.
Chem Rev. 2017 Mar 8;117(5):4422-4461. doi: 10.1021/acs.chemrev.6b00676. Epub 2017 Feb 24.
7
Structure-Based Discovery of Potential Fungicides as Succinate Ubiquinone Oxidoreductase Inhibitors.
J Agric Food Chem. 2017 Feb 8;65(5):1021-1029. doi: 10.1021/acs.jafc.6b05134. Epub 2017 Jan 31.
8
Change in Pseudomonas aeruginosa prevalence in cystic fibrosis adults over time.
BMC Pulm Med. 2016 Dec 7;16(1):176. doi: 10.1186/s12890-016-0333-y.
9
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection.
BMC Pulm Med. 2016 Dec 5;16(1):174. doi: 10.1186/s12890-016-0339-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验