Suppr超能文献

具有有向通信网络的非线性多智能体系统基于神经学习的固定时间一致性跟踪控制

Neural Learning-Based Fixed-Time Consensus Tracking Control for Nonlinear Multiagent Systems With Directed Communication Networks.

作者信息

Liu Yan, Yang Guang-Hong

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):639-652. doi: 10.1109/TNNLS.2020.2978854. Epub 2021 Feb 4.

Abstract

This article investigates the problem of fixed-time consensus tracking for nonlinear multiagent systems. Different from the existing studies where the follower systems are linear or pure integrator-type systems, in this article, the follower systems have completely unknown nonlinear functions and time-varying disturbances. Within this framework, a fixed-time observer-based distributed control strategy is proposed to realize the consensus tracking. First, a distributed fixed-time observer is designed for each follower to estimate the leader's state under directed networks. Then, based on the estimate, a fixed-time tracking control protocol is developed where novel approximation and estimation schemes are designed to tackle the nonlinear functions and disturbances. Furthermore, under the proposed control strategy, it is proved that the tracking errors converge into a small set near zero with a fixed-time convergence rate. Finally, the validity of the proposed method is verified by the simulation results.

摘要

本文研究了非线性多智能体系统的固定时间一致性跟踪问题。与现有研究中跟随系统为线性或纯积分器型系统不同,本文中的跟随系统具有完全未知的非线性函数和时变干扰。在此框架下,提出了一种基于固定时间观测器的分布式控制策略来实现一致性跟踪。首先,为每个跟随器设计一个分布式固定时间观测器,以在有向网络下估计领导者的状态。然后,基于该估计,开发了一种固定时间跟踪控制协议,其中设计了新颖的逼近和估计方案来处理非线性函数和干扰。此外,在所提出的控制策略下,证明了跟踪误差以固定时间收敛速率收敛到零附近的一个小集合中。最后,通过仿真结果验证了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验