Suppr超能文献

新型成像技术揭示心血管波形分析的内在动力学:基于无监督流形学习的方法。

Novel Imaging Revealing Inner Dynamics for Cardiovascular Waveform Analysis via Unsupervised Manifold Learning.

机构信息

From the Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.

Department of Anesthesiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.

出版信息

Anesth Analg. 2020 May;130(5):1244-1254. doi: 10.1213/ANE.0000000000004738.

Abstract

BACKGROUND

Cardiovascular waveforms contain information for clinical diagnosis. By learning and organizing the subtle change of waveform morphology from large amounts of raw waveform data, unsupervised manifold learning helps delineate a high-dimensional structure and display it as a novel 3-dimensional (3D) image. We hypothesize that the shape of this structure conveys clinically relevant inner dynamics information.

METHODS

To validate this hypothesis, we investigate the electrocardiography (ECG) waveform for ischemic heart disease and arterial blood pressure (ABP) waveform in dynamic vasoactive episodes. We model each beat or pulse to be a point lying on a manifold-like a surface-and use the diffusion map (DMap) to establish the relationship among those pulses. The output of the DMap is converted to a 3D image for visualization. For ECG datasets, first we analyzed the non-ST-elevation ECG waveform distribution from unstable angina to healthy control in the 3D image, and we investigated intraoperative ST-elevation ECG waveforms to show the dynamic ECG waveform changes. For ABP datasets, we analyzed waveforms collected under endotracheal intubation and administration of vasodilator. To quantify the dynamic separation, we applied the support vector machine (SVM) analysis and reported the total accuracy and macro-F1 score. We further performed the trajectory analysis and derived the moving direction of successive beats (or pulses) as vectors in the high-dimensional space.

RESULTS

For the non-ST-elevation ECG, a hierarchical tree structure comprising consecutive ECG waveforms spanning from unstable angina to healthy control is presented in the 3D image (accuracy = 97.6%, macro-F1 = 96.1%). The DMap helps quantify and visualize the evolving direction of intraoperative ST-elevation myocardial episode in a 1-hour period (accuracy = 97.58%, macro-F1 = 96.06%). The ABP waveform analysis of Nicardipine administration shows interindividual difference (accuracy = 95.01%, macro-F1 = 96.9%) and their common directions from intraindividual moving trajectories. The dynamic change of the ABP waveform during endotracheal intubation shows a loop-like trajectory structure, which can be further divided using the manifold learning knowledge obtained from Nicardipine.

CONCLUSIONS

The DMap and the generated 3D image of ECG or ABP waveforms provides clinically relevant inner dynamics information. It provides clues of acute coronary syndrome diagnosis, shows clinical course in myocardial ischemic episode, and reveals underneath physiological mechanism under stress or vasodilators.

摘要

背景

心血管波形包含用于临床诊断的信息。通过学习和组织大量原始波形数据中波形形态的细微变化,无监督流形学习有助于描绘高维结构,并将其显示为新颖的三维(3D)图像。我们假设该结构的形状传达了具有临床相关性的内在动力学信息。

方法

为了验证这一假设,我们研究了缺血性心脏病的心电图(ECG)波形和动态血管活性发作中的动脉血压(ABP)波形。我们将每个节拍或脉搏建模为位于流形上的点 - 类似于表面 - 并使用扩散图(DMap)来建立这些脉搏之间的关系。DMap 的输出转换为 3D 图像以进行可视化。对于 ECG 数据集,我们首先分析了不稳定型心绞痛到健康对照组的非 ST 段抬高 ECG 波形分布,然后研究了术中 ST 段抬高 ECG 波形以显示动态 ECG 波形变化。对于 ABP 数据集,我们分析了在气管内插管和血管扩张剂给药下采集的波形。为了量化动态分离,我们应用支持向量机(SVM)分析并报告了总准确性和宏 F1 分数。我们进一步进行了轨迹分析,并从连续节拍(或脉搏)在高维空间中的运动方向中推导出运动方向。

结果

对于非 ST 段抬高的 ECG,3D 图像中呈现了一个包含从不稳定型心绞痛到健康对照组的连续 ECG 波形的层次树结构(准确性= 97.6%,宏 F1 = 96.1%)。DMap 有助于量化和可视化术中 ST 段抬高心肌发作 1 小时内的演变方向(准确性= 97.58%,宏 F1 = 96.06%)。Nicardipine 给药的 ABP 波形分析显示个体间差异(准确性= 95.01%,宏 F1 = 96.9%)及其来自个体内运动轨迹的共同方向。气管内插管期间 ABP 波形的动态变化显示出环形轨迹结构,该结构可以使用从 Nicardipine 获得的流形学习知识进一步划分。

结论

ECG 或 ABP 波形的 DMap 和生成的 3D 图像提供了具有临床相关性的内在动力学信息。它为急性冠状动脉综合征的诊断提供了线索,显示了心肌缺血发作中的临床过程,并揭示了应激或血管扩张剂下的生理机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验