Suppr超能文献

利用生物聚合物分子动力学晶格网络的马尔可夫平均能量不变量研究寄生虫蛋白质的肽指纹图谱及药物与DNA的相互作用。

Study of peptide fingerprints of parasite proteins and drug-DNA interactions with Markov-Mean-Energy invariants of biopolymer molecular-dynamic lattice networks.

作者信息

Pérez-Montoto Lázaro Guillermo, Dea-Ayuela María Auxiliadora, Prado-Prado Francisco J, Bolas-Fernández Francisco, Ubeira Florencio M, González-Díaz Humberto

机构信息

Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

出版信息

Polymer (Guildf). 2009 Jul 17;50(15):3857-3870. doi: 10.1016/j.polymer.2009.05.055. Epub 2009 Jun 3.

Abstract

Since the advent of Molecular Dynamics (MD) in biopolymers science with the study by Karplus et al. on protein dynamics, MD has become the by foremost well established, computational technique to investigate structure and function of biomolecules and their respective complexes and interactions. The analysis of the MD trajectories (MDTs) remains, however, the greatest challenge and requires a great deal of insight, experience, and effort. Here, we introduce a new class of invariants for MDTs based on the spatial distribution of Mean-Energy values () on a 2D Euclidean space representation of the MDTs. The procedure forces one MD trajectory to fold into a 2D Cartesian coordinates system using a step-by-step procedure driven by simple rules. The () values are invariants of a Markov matrix ( ), which describes the probabilities of transition between two states in the new 2D space; which is associated to a graph representation of MDTs similar to the lattice networks (LNs) of DNA and protein sequences. We also introduce a new algorithm to perform phylogenetic analysis of peptides based on MDTs instead of the sequence of the polypeptide. In a first experiment, we illustrate this algorithm for 35 peptides present on the Peptide Mass Fingerprint (PMF) of a new protein of studied in this work. We report, by the first time, 2D Electrophoresis isolation, MALDI TOF Mass Spectroscopy characterization, and MASCOT search results for this PMF. In a second experiment, we construct the LNs for 422 MDTs obtained in DNA-Drug Docking simulations of the interaction of 57 anticancer furocoumarins with a DNA oligonucleotide. We calculated the respective () values for all these LNs and used them as inputs to train a new classifier with Accuracy = 85.44% and 84.91% in training and validation respectively. The new model can be used as scoring function to guide DNA-Drug Docking studies in drug design of new coumarins for PUVA therapy. The new phylogenetics analysis algorithms encode information different from sequence similarity and may be used to analyze MDTs obtained in Docking or modeling experiments for any classes of biopolymers. The work opens new perspective on the analysis and applications of MD in polymer sciences.

摘要

自从卡尔普斯等人对蛋白质动力学的研究将分子动力学(MD)引入生物聚合物科学以来,MD已成为研究生物分子及其复合物和相互作用的结构与功能的首要且成熟的计算技术。然而,对MD轨迹(MDTs)的分析仍然是最大的挑战,需要大量的洞察力、经验和努力。在此,我们基于MDTs在二维欧几里得空间表示上的平均能量值()的空间分布,引入了一类新的MDTs不变量。该过程通过由简单规则驱动的逐步程序,迫使一条MD轨迹折叠到二维笛卡尔坐标系中。()值是马尔可夫矩阵()的不变量,该矩阵描述了新二维空间中两个状态之间的转移概率;它与类似于DNA和蛋白质序列的晶格网络(LNs)的MDTs的图形表示相关联。我们还引入了一种新算法,基于MDTs而非多肽序列进行肽段的系统发育分析。在第一个实验中,我们针对本文研究的一种新蛋白质的肽质量指纹(PMF)中存在的35个肽段说明了该算法。我们首次报告了该PMF的二维电泳分离、基质辅助激光解吸电离飞行时间质谱表征和MASCOT搜索结果。在第二个实验中,我们构建了57种抗癌呋喃香豆素与一种DNA寡核苷酸相互作用的DNA - 药物对接模拟中获得的422个MDTs的LNs。我们计算了所有这些LNs的各自()值,并将其用作输入来训练一个新的分类器,在训练和验证中的准确率分别为85.44%和84.91%。新模型可作为评分函数,用于指导针对PUVA疗法的新型香豆素药物设计中的DNA - 药物对接研究。新的系统发育分析算法编码的信息不同于序列相似性,可用于分析任何生物聚合物类别的对接或建模实验中获得的MDTs。这项工作为聚合物科学中MD的分析和应用开辟了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40c5/7111648/44d16f9cf274/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验