Shen Pao-Sheng
Department of Statistics, Tunghai University, Taichung 40704, Taiwan.
J Stat Plan Inference. 2011 Jul;141(7):2494-2499. doi: 10.1016/j.jspi.2011.02.014. Epub 2011 Feb 18.
In this note, we consider data subjected to middle censoring where the variable of interest becomes unobservable when it falls within an interval of censorship. We demonstrate that the nonparametric maximum likelihood estimator (NPMLE) of distribution function can be obtained by using Turnbull's (1976) EM algorithm or self-consistent estimating equation (Jammalamadaka and Mangalam, 2003) with an initial estimator which puts mass only on the innermost intervals. The consistency of the NPMLE can be established based on the asymptotic properties of self-consistent estimators (SCE) with mixed interval-censored data (Yu et al., 2000, Yu et al., 2001).
在本笔记中,我们考虑受到中间截尾的数据,即当感兴趣的变量落入截尾区间时,该变量变得不可观测。我们证明,分布函数的非参数最大似然估计器(NPMLE)可以通过使用特恩布尔(1976)的期望最大化(EM)算法或自洽估计方程(贾马拉马达卡和曼加拉姆,2003)来获得,其中初始估计器仅将质量赋予最内层区间。基于具有混合区间截尾数据的自洽估计器(SCE)的渐近性质(于等人,2000,于等人,2001),可以建立NPMLE的一致性。