Superior Institute of Biomedical Sciences, Ceará State University (UECE), Fortaleza, Brazil; Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil.
Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil.
Comp Biochem Physiol C Toxicol Pharmacol. 2020 Jul;233:108763. doi: 10.1016/j.cbpc.2020.108763. Epub 2020 Apr 11.
The role of endothelium in the electrical-field stimulation (EFS)-induced contractions of Chelonoidis carbonaria aorta was investigated. Contractions were evaluated in the presence and absence of L-NAME (100 μM), tetrodotoxin (1 μM), phentolamine (10 and 100 μM), phenoxybenzamine (1 and 10 μM), prazosin (100 μM), idazoxan (100 μM), atropine (10 μM), D-tubocurarine (10 μM) or indomethacin (10 μM). EFS-induced contraction was also carried out in endothelium-denuded rings. EFS-induced contraction was investigated by the sandwich assay. Concentration curves to endothelin-1 (0.1-100 nM) and U46619 (0.001-100 μM) were also constructed to calculate both Emax and EC. EFS at 16 Hz contracted Chelonoidis aorta, which was almost abolished by the endothelium removal. The addition of L-NAME increased the EFS response (2.0 ± 0.4 and 8.3 ± 1.9 mN). In L-NAME treated aortic rings, tetrodotoxin did not change the EFS-response (5.1 ± 1.8 and 4.9 ± 1.7 mN). Indomethacin, atropine and d-tubucurarine also did not affect the EFS-response. Phentolamine at 10 μM did not change the EFS-induced contraction; however, at 100 μM, reduced it (3.9 ± 1 and 1.9 ± 0.3 mN). Prazosin and idazoxan did not change EFS-induced contractions. Phenoxybenzamine at 1 μM reduced by 76% (9.6 ± 3.4 and 2.3 ± 0.8 mN) and at 10 μM by 90% the EFS response. Immunohistochemistry identified tyrosine hydroxylase in the endothelium and brain, whereas S100 protein was found only in brain. In conclusion, endothelium modulates EFS-induced contractions in Chelonoidis aortic rings and this modulation may be due to endothelium-derived catecholamines, possibly dopamine.
研究了内皮细胞在电刺激(EFS)诱导的 Chelonoidis carbonaria 主动脉收缩中的作用。在存在和不存在 L-NAME(100μM)、河豚毒素(1μM)、酚妥拉明(10 和 100μM)、苯氧苄胺(1 和 10μM)、哌唑嗪(100μM)、伊达唑兰(100μM)、阿托品(10μM)、D-筒箭毒碱(10μM)或吲哚美辛(10μM)的情况下评估收缩。还在去内皮环中进行了 EFS 诱导的收缩。通过夹心测定法研究 EFS 诱导的收缩。还构建了内皮素-1(0.1-100nM)和 U46619(0.001-100μM)的浓度曲线,以计算 Emax 和 EC。16Hz 的 EFS 收缩 Chelonoidis 主动脉,去除内皮后几乎完全消除。添加 L-NAME 增加了 EFS 反应(2.0±0.4 和 8.3±1.9mN)。在 L-NAME 处理的主动脉环中,河豚毒素没有改变 EFS 反应(5.1±1.8 和 4.9±1.7mN)。吲哚美辛、阿托品和 D-筒箭毒碱也没有影响 EFS 反应。苯氧苄胺在 10μM 时没有改变 EFS 诱导的收缩;然而,在 100μM 时,它降低了收缩(3.9±1 和 1.9±0.3mN)。哌唑嗪和伊达唑兰没有改变 EFS 诱导的收缩。苯氧苄胺在 1μM 时减少了 76%(9.6±3.4 和 2.3±0.8mN),在 10μM 时减少了 90%EFS 反应。免疫组织化学鉴定出内皮细胞和大脑中的酪氨酸羟化酶,而 S100 蛋白仅在大脑中发现。总之,内皮细胞调节 Chelonoidis 主动脉环中 EFS 诱导的收缩,这种调节可能是由于内皮衍生的儿茶酚胺,可能是多巴胺。