Many Manda B, Senyange B, Skokos Ch
Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.
Phys Rev E. 2020 Mar;101(3-1):032206. doi: 10.1103/PhysRevE.101.032206.
We reveal the generic characteristics of wave-packet delocalization in two-dimensional nonlinear disordered lattices by performing extensive numerical simulations in two basic disordered models: the Klein-Gordon system and the discrete nonlinear Schrödinger equation. We find that in both models (a) the wave packet's second moment asymptotically evolves as t^{a_{m}} with a_{m}≈1/5 (1/3) for the weak (strong) chaos dynamical regime, in agreement with previous theoretical predictions [S. Flach, Chem. Phys. 375, 548 (2010)CMPHC20301-010410.1016/j.chemphys.2010.02.022]; (b) chaos persists, but its strength decreases in time t since the finite-time maximum Lyapunov exponent Λ decays as Λ∝t^{α_{Λ}}, with α_{Λ}≈-0.37 (-0.46) for the weak (strong) chaos case; and (c) the deviation vector distributions show the wandering of localized chaotic seeds in the lattice's excited part, which induces the wave packet's thermalization. We also propose a dimension-independent scaling between the wave packet's spreading and chaoticity, which allows the prediction of the obtained α_{Λ} values.
通过在两个基本无序模型(克莱因 - 戈登系统和离散非线性薛定谔方程)中进行广泛的数值模拟,我们揭示了二维非线性无序晶格中波包离域的一般特征。我们发现,在这两个模型中:(a)对于弱(强)混沌动力学区域,波包的二阶矩渐近地随(t^{a_{m}})演化,其中(a_{m}\approx1/5)((1/3)),这与先前的理论预测一致 [S. Flach, Chem. Phys. 375, 548 (2010)CMPHC20301 - 010410.1016/j.chemphys.2010.02.022];(b)混沌持续存在,但其强度随时间(t)减小,因为有限时间最大李雅普诺夫指数(\Lambda)随(\Lambda\propto t^{\alpha_{\Lambda}})衰减,对于弱(强)混沌情况,(\alpha_{\Lambda}\approx - 0.37)((-0.46));并且(c)偏差向量分布显示了局部混沌种子在晶格激发部分的游走,这导致了波包的热化。我们还提出了波包扩展与混沌之间的与维度无关的标度关系,这使得能够预测所获得的(\alpha_{\Lambda})值。