Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA.
SLAS Discov. 2020 Jun;25(5):420-433. doi: 10.1177/2472555220905558. Epub 2020 Apr 15.
K channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K equilibrium potential (E). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (K) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.
钾通道通过设定细胞静息膜电位和决定动作电位的形状和持续时间,在维持可兴奋细胞的正常电活动方面起着关键作用。在非兴奋性细胞中,钾通道建立电化学梯度,这对于维持体液的盐和体积平衡是必要的。内向整流钾 (Kir) 通道通常比外向电流传导更大的内向电流,导致内向整流电流与电压的关系。这种内向整流的特性是由于通道被细胞内多价阳离子的电压依赖性阻断而产生的,这使得这些通道专门设计用于将静息电位维持在钾平衡电位 (E) 附近。Kir 通道家族由七个亚家族组成 (Kir1.x 到 Kir7.x),包括经典的内向整流 (Kir2.x) 通道、G 蛋白门控内向整流钾 (GIRK) (Kir3.x) 和三磷酸腺苷 (ATP) 敏感 (K) (Kir 6.x) 通道以及肾性 Kir1.1 (ROMK)、Kir4.1 和 Kir7.1 通道。这些通道不仅具有调节电/电解质转运活性的功能,而且作为 G 蛋白偶联受体 (GPCR) 的效应分子和细胞代谢的分子传感器。值得注意的是,Kir 通道是治疗多种临床病症的有前途的药理学靶点,包括心律失常、焦虑、慢性疼痛和高血压。本综述简要介绍了 Kir 通道的结构、功能和药理学背景,然后重点描述和评估了目前用于 Kir 通道药物发现的高通量筛选 (HTS) 技术,如膜电位敏感荧光染料测定法、离子通量测量和自动化膜片钳系统。