Suppr超能文献

用于测定水泥厂工人血浆和尿液样本中八甲基环四硅氧烷的柠檬酸盐稳定的FeO/DMG修饰碳糊电极。

Citrate stabilized FeO/DMG modified carbon paste electrode for determination of octamethylcyclotetrasiloxane in blood plasma and urine samples of cement factory workers.

作者信息

Heidarimoghadam Rashid, Farmany Abbas

机构信息

1Health Sciences Research Center and Department of Ergonomics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.

2Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

出版信息

BMC Chem. 2020 Apr 8;14(1):29. doi: 10.1186/s13065-020-00681-7. eCollection 2020 Dec.

Abstract

In this paper, a novel mercury-free electrochemical probe was constructed for the trace determination of octamethylcyclotetrasiloxane (D) in some biological fluids by adsorptive stripping voltammetry. The platform is based on the adsorptive accumulation of Ni(II) onto a carbon paste electrode modified with citrate stabilized FeO (Cit-FeO) and dimethylglyoxime (DMG). It was shown that trace levels of D enhance the electrochemical adsorptive stripping signal of Ni(II) on the electrode platform. It was shown that electrochemical signals are proportional to concentrations of D. The supporting electrolyte, pH and instrumental parameters associated with the electrode response, including scan rate, accumulation potential and deposition time were optimized. The electrode platform demonstrated well resolved, reproducible peaks, with relative standard deviation (RSD) of 3.8% and detection limit (3S/m) of 27.0 ng/mL. The sensor exhibited good D detection and quantification in human blood plasma and urine samples.

摘要

本文构建了一种新型无汞电化学探针,用于通过吸附溶出伏安法对某些生物流体中的八甲基环四硅氧烷(D)进行痕量测定。该平台基于Ni(II)在柠檬酸稳定的FeO(Cit-FeO)和丁二酮肟(DMG)修饰的碳糊电极上的吸附积累。结果表明,痕量的D增强了电极平台上Ni(II)的电化学吸附溶出信号。结果表明,电化学信号与D的浓度成正比。对支持电解质、pH以及与电极响应相关的仪器参数(包括扫描速率、积累电位和沉积时间)进行了优化。该电极平台显示出分辨良好、可重现的峰,相对标准偏差(RSD)为3.8%,检测限(3S/m)为27.0 ng/mL。该传感器在人血浆和尿液样本中表现出良好的D检测和定量能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26bb/7144048/57a0429be7dc/13065_2020_681_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验