Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569, Stuttgart, Germany.
Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600, Duebendorf, Switzerland.
Adv Biosyst. 2020 Mar;4(3):e1900301. doi: 10.1002/adbi.201900301. Epub 2020 Feb 7.
The usage of biomineralization processes performed by living microalgae to create 3D nanostructured materials are advantageous compared to conventional synthesis routes. Exploitation of in vivo shaping using living cells leads to inorganic intricate biominerals, produced with low environmental impact. Since biomineralization processes are genetically controlled, the formation of nanostructured materials is highly reproducible. The shells of microalgae, like coccoliths, are particularly of great interest. This study shows the generation of mesoporous highly structured functional materials with induced optoelectronical properties using in vivo processes of the microalga species Emiliania huxleyi. It demonstrates the metabolically driven incorporation of the lanthanide terbium into the coccoliths of E. huxleyi as a route for the synthesis of finely patterned photoluminescent particles by feeding the microalgae with this luminescent element. The resulting green luminescent particles have hierarchical ordered pores on the nano- and microscale and may act as powerful tools for many applications; they may serve as imaging probes for biomedical applications, or in microoptics. The luminescent coccoliths combine a unique hierarchical structure with a characteristic luminescence pattern, which make them superior to conventional produced Tb doted material. With this study, the possibility of the further exploitation of coccoliths as advanced functional materials for nanotechnological applications is given.
与传统合成路线相比,利用活微藻进行生物矿化过程来制造 3D 纳米结构材料具有优势。利用活细胞进行体内成型的开发导致产生了具有低环境影响的无机复杂生物矿化材料。由于生物矿化过程受基因控制,因此纳米结构材料的形成具有高度的可重复性。微藻的壳,如颗石藻,特别令人感兴趣。本研究展示了使用微藻物种 Emiliania huxleyi 的体内过程生成具有诱导光电特性的中孔高度结构化功能材料。它证明了通过用这种发光元素喂养微藻,将镧系元素铽代谢性地掺入到 E. huxleyi 的颗石藻中的方法是合成精细图案化光致发光颗粒的途径。所得的绿色发光颗粒在纳米和微米尺度上具有分级有序的孔,可作为许多应用的有力工具;它们可以用作生物医学应用的成像探针,或用于微光学。发光颗石藻结合了独特的分层结构和特征发光图案,使其优于传统生产的 Tb 掺杂材料。通过这项研究,为进一步开发颗石藻作为纳米技术应用的先进功能材料提供了可能性。