Tenney Stephanie M, Vilchez Victoria, Sonnleitner Mikayla L, Huang Chengye, Friedman Hannah C, Shin Ashley J, Atallah Timothy L, Deshmukh Arundhati P, Ithurria Sandrine, Caram Justin R
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
Laboratoire de Physique et d'Étude des Matériaux, PSL Research University, CNRS UMR 8213, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France.
J Phys Chem Lett. 2020 May 7;11(9):3473-3480. doi: 10.1021/acs.jpclett.0c00958. Epub 2020 Apr 21.
Despite broad applications in imaging, energy conversion, and telecommunications, few nanoscale moieties emit light efficiently in the shortwave infrared (SWIR, 1000-2000 nm or 1.24-0.62 eV). We report quantum-confined mercury chalcogenide (HgX, where X = Se or Te) nanoplatelets (NPLs) can be induced to emit bright (QY > 30%) and tunable (900-1500+ nm) infrared emission from attached quantum dot (QD) "defect" states. We demonstrate near unity energy transfer from NPL to these QDs, which completely quench NPL emission and emit with a high QY through the SWIR. This QD defect emission is kinetically tunable, enabling controlled midgap emission from NPLs. Spectrally resolved photoluminescence demonstrates energy-dependent lifetimes, with radiative rates 10-20 times faster than those of their PbX analogues in the same spectral window. Coupled with their high quantum yield, midgap emission HgX dots on HgX NPLs provide a potential platform for novel optoelectronics in the SWIR.
尽管在成像、能量转换和电信领域有广泛应用,但很少有纳米级部分能在短波红外(SWIR,1000 - 2000纳米或1.24 - 0.62电子伏特)波段高效发光。我们报道了量子限域硫族汞化物(HgX,其中X = Se或Te)纳米片(NPL)可被诱导从附着的量子点(QD)“缺陷”态发出明亮(量子产率>30%)且可调谐(900 - 1500 +纳米)的红外光。我们证明了从NPL到这些量子点的近乎完全的能量转移,这完全淬灭了NPL的发光,并通过SWIR以高量子产率发光。这种量子点缺陷发光在动力学上是可调谐的,能够实现对NPL中间能隙发光的控制。光谱分辨光致发光表明其寿命与能量相关,辐射速率比相同光谱窗口中其PbX类似物快10 - 20倍。结合其高量子产率,HgX NPL上的中间能隙发光HgX量子点为SWIR中的新型光电子学提供了一个潜在平台。