Ouzon-Shubeita Hala, Jung Hunmin, Lee Michelle H, Koag Myong-Chul, Lee Seongmin
Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A.
Biochem J. 2020 May 15;477(9):1601-1612. doi: 10.1042/BCJ20200125.
Thymine:guanine base pairs are major promutagenic mismatches occurring in DNA metabolism. If left unrepaired, these mispairs can cause C to T transition mutations. In humans, T:G mismatches are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (hMBD4) and thymine-DNA glycosylase. Unlike lesion-specific DNA glycosylases, T:G-mismatch-specific DNA glycosylases specifically recognize both bases of the mismatch and remove the thymine but only from mispairs with guanine. Despite the advances in biochemical and structural characterizations of hMBD4, the catalytic mechanism of hMBD4 remains elusive. Herein, we report two structures of hMBD4 processing T:G-mismatched DNA. A high-resolution crystal structure of Asp560Asn hMBD4-T:G complex suggests that hMBD4-mediated glycosidic bond cleavage occurs via a general base catalysis mechanism assisted by Asp560. A structure of wild-type hMBD4 encountering T:G-containing DNA shows the generation of an apurinic/apyrimidinic (AP) site bearing the C1'-(S)-OH. The inversion of the stereochemistry at the C1' of the AP-site indicates that a nucleophilic water molecule approaches from the back of the thymine substrate, suggesting a bimolecular displacement mechanism (SN2) for hMBD4-catalyzed thymine excision. The AP-site is stabilized by an extensive hydrogen bond network in the MBD4 catalytic site, highlighting the role of MBD4 in protecting the genotoxic AP-site.
鸟嘌呤碱基对是DNA代谢中主要的促诱变错配。如果不进行修复,这些错配会导致C到T的转换突变。在人类中,T:G错配部分由错配特异性DNA糖基化酶修复,如甲基-CpG结合结构域4(hMBD4)和胸腺嘧啶-DNA糖基化酶。与损伤特异性DNA糖基化酶不同,T:G错配特异性DNA糖基化酶特异性识别错配的两个碱基,并仅从与鸟嘌呤的错配中去除胸腺嘧啶。尽管在hMBD4的生化和结构表征方面取得了进展,但其催化机制仍然难以捉摸。在此,我们报告了hMBD4处理T:G错配DNA的两种结构。Asp560Asn hMBD4-T:G复合物的高分辨率晶体结构表明,hMBD4介导的糖苷键裂解通过由Asp560辅助的一般碱催化机制发生。野生型hMBD4与含T:G的DNA相遇的结构显示产生了带有C1'-(S)-OH的无嘌呤/无嘧啶(AP)位点。AP位点C1'处立体化学的反转表明亲核水分子从胸腺嘧啶底物的背面接近,这表明hMBD4催化的胸腺嘧啶切除存在双分子取代机制(SN2)。AP位点通过MBD4催化位点中广泛的氢键网络得以稳定,突出了MBD4在保护遗传毒性AP位点中的作用。