Shima Takanori, Yang Jimin, Luo Gen, Luo Yi, Hou Zhaomin
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
J Am Chem Soc. 2020 May 13;142(19):9007-9016. doi: 10.1021/jacs.0c02939. Epub 2020 Apr 29.
Activation of dinitrogen (N) by well-defined metal hydrides is of much interest and importance, but studies in this area have remained limited to date. We report here N activation and hydrogenation by CMeSiMe-ligated di- and trinuclear chromium polyhydride complexes. Hydrogenolysis of [Cp'Cr(μ-Me)CrCp'] (Cp' = CMeSiMe) () with H in a dilute hexane solution under N-free conditions affords the dichromium dihydride complex [Cp'Cr(μ-H)CrCp'] (), while hydrogenolysis of in a concentrated solution or without solvent provides the trinuclear chromium tetrahydride complex [(Cp'Cr)(μ-H)(μ-H)] (). When the reaction is carried out in the presence of N in a dilute hexane solution, the tetranuclear diimide/dihydride complex [(Cp'Cr)(μ-NH)(μ-H)] () is formed via N-N bond cleavage and N-H bond formation. The reaction of with N at room temperature gives the tetranuclear imide/nitride/dihydride complex [(Cp'Cr)(CMe(CH)SiMe)Cr(μ-NH)(μ-N)(μ-H)] () via N cleavage and hydrogenation and C-H bond activation of a Cp methyl group. At -30 °C, the reaction of with N affords the dinitride intermediate [(Cp'Cr)(μ-N)(μ-H)] (), which is quantitatively transformed to at room temperature. Complex reversibly converts to the stereoisomer . The hydrogenation of a mixture of and with H affords . The reaction of with N proceeds at 100 °C to afford [(Cp'Cr)(μ-NH)] (). This transformation has also been investigated by DFT calculations. Both experimental and computational studies suggest that N incorporation into the chromium hydride cluster is involved in the rate-determining step. This work represents the first example of N cleavage and hydrogenation by well-defined chromium hydride complexes.
通过结构明确的金属氢化物实现双氮(N₂)的活化备受关注且具有重要意义,但迄今为止该领域的研究仍然有限。我们在此报告了由CMeSiMe配体的双核和三核铬多氢化物配合物实现的氮活化和氢化反应。在无氮条件下,于稀己烷溶液中用H₂对[Cp'Cr(μ-Me)CrCp'](Cp' = CMeSiMe)()进行氢解反应,得到二铬二氢化物配合物[Cp'Cr(μ-H)CrCp'](),而在浓溶液中或无溶剂条件下对进行氢解反应,则得到三核铬四氢化物配合物[(Cp'Cr)₂(μ-H)₂(μ-H)₂]()。当反应在稀己烷溶液中N₂存在下进行时,通过N - N键断裂和N - H键形成生成四核二亚胺/二氢化物配合物[(Cp'Cr)₂(μ-NH)(μ-H)₂]()。与N₂在室温下反应,通过N₂裂解、氢化以及Cp甲基的C - H键活化,得到四核亚胺/氮化物/二氢化物配合物[(Cp'Cr)₂(CMe(CH)SiMe)Cr(μ-NH)(μ-N)(μ-H)₂]()。在 - 30℃下,与N₂反应生成二氮化物中间体[(Cp'Cr)₂(μ-N)₂(μ-H)₂](),该中间体在室温下定量转化为。配合物可逆地转化为立体异构体。与H₂对和的混合物进行氢化反应得到。与N₂在100℃下反应生成[(Cp'Cr)₂(μ-NH)₂]()。还通过密度泛函理论(DFT)计算对该转化过程进行了研究。实验和计算研究均表明,氮掺入氢化铬簇参与了速率决定步骤。这项工作代表了由结构明确的铬氢化物配合物实现氮裂解和氢化的首个实例。