Suppr超能文献

差异的葡萄糖和β-羟丁酸代谢为新生缺氧缺血大鼠模型中的未成熟大脑提供了内在的神经保护作用。

Differential glucose and beta-hydroxybutyrate metabolism confers an intrinsic neuroprotection to the immature brain in a rat model of neonatal hypoxia ischemia.

机构信息

Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.

Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.

出版信息

Exp Neurol. 2020 Aug;330:113317. doi: 10.1016/j.expneurol.2020.113317. Epub 2020 Apr 15.

Abstract

Neonatal hypoxia ischemia (HI) is the main cause of newborn mortality and morbidity. Preclinical studies have shown that the immature rat brain is more resilient to HI injury, suggesting innate mechanisms of neuroprotection. During neonatal period brain metabolism experience changes that might greatly affect the outcome of HI injury. Therefore, the aim of the present study was to investigate how changes in brain metabolism interfere with HI outcome in different stages of CNS development. For this purpose, animals were divided into 6 groups: HIP3, HIP7 and HIP11 (HI performed at postnatal days 3, 7 and 11, respectively), and their respective shams. In vivo [F]FDG micro positron emission tomography (microPET) imaging was performed 24 and 72 h after HI, as well as ex-vivo assessments of glucose and beta-hydroxybutyrate (BHB) oxidation. At adulthood behavioral tests and histology were performed. Behavioral and histological analysis showed greater impairments in HIP11 animals, while HIP3 rats were not affected. Changes in [F]FDG metabolism were found only in the lesion area of HIP11, where a substantial hypometabolism was detected. Furthermore, [F]FDG hypometabolism predicted impaired cognition and worst histological outcomes at adulthood. Finally, substrate oxidation assessments showed that glucose oxidation remained unaltered and higher level of BHB oxidation found in P3 animals, suggesting a more resilient metabolism. Overall, present results show [F]FDG microPET predicts long-term injury outcome and suggests that higher BHB utilization is one of the mechanisms that confer the intrinsic neuroprotection to the immature brain and should be explored as a therapeutic target for treatment of HI.

摘要

新生儿缺氧缺血性损伤(HI)是新生儿死亡和发病的主要原因。临床前研究表明,未成熟大鼠的大脑对 HI 损伤具有更强的抵抗力,提示存在内在的神经保护机制。在新生儿期,大脑代谢发生变化,这可能极大地影响 HI 损伤的结果。因此,本研究旨在探讨大脑代谢的变化如何在中枢神经系统发育的不同阶段影响 HI 损伤的结果。为此,将动物分为 6 组:HIP3、HIP7 和 HIP11(分别在出生后第 3、7 和 11 天进行 HI)及其相应的假手术组。在 HI 后 24 和 72 小时进行活体 [F]FDG 微正电子发射断层扫描(microPET)成像,以及体外葡萄糖和β-羟丁酸(BHB)氧化评估。在成年期进行行为测试和组织学评估。行为学和组织学分析表明,HIP11 动物的损伤更严重,而 HIP3 大鼠则未受影响。仅在 HIP11 的病变区域发现 [F]FDG 代谢变化,检测到明显的代谢低下。此外,[F]FDG 代谢低下预测认知受损和成年时最严重的组织学结果。最后,底物氧化评估显示葡萄糖氧化保持不变,而 P3 动物中 BHB 氧化水平更高,提示代谢更具弹性。总之,目前的结果表明 [F]FDG microPET 可预测长期损伤结果,并表明更高的 BHB 利用是未成熟大脑内在神经保护的机制之一,应作为 HI 治疗的治疗靶点进行探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验