Suppr超能文献

富氧空位非晶态 TiO-BiOBr-海泡石复合材料的多维组装,用于可见光下快速去除甲醛和土霉素。

Multidimensional assembly of oxygen vacancy-rich amorphous TiO-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light.

机构信息

School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China.

School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China.

出版信息

J Colloid Interface Sci. 2020 Aug 15;574:61-73. doi: 10.1016/j.jcis.2020.04.035. Epub 2020 Apr 12.

Abstract

Herein, a novel oxygen vacancy-rich amorphous TiO-BiOBr-sepiolite composite was synthesized through a facile one-pot solvothermal method. Under visible light, it exhibited enhanced adsorption and photocatalytic removal activity towards gaseous formaldehyde, whose reaction rate constant is nearly 11.75, 3.44, 1.69, 2.18 and 6.27 times higher than those of amorphous TiO, BiOBr, TiO-BiOBr, oxygen vacancy-poor composite and P25, respectively. Moreover, it also displayed significantly improved photodegradation performance towards oxytetracycline under visible light. The improved photocatalytic activity is mainly ascribed to the synergy between the ternary heterogeneous structure and introduced oxygen vacancy, leading to the superior adsorption performance, extended visible-light adsorption scope and faster carriers' separation rate. The photogenerated holes are the dominant active species during the reaction process. Additionally, a plausible photocatalytic degradation pathway for oxytetracycline was also proposed. In general, this work provides a viable strategy of visible-light-driven photocatalyst for practical environmental remediation of indoor volatile organic compounds (VOCs) and pharmaceuticals and personal care products (PPCPs).

摘要

在此,通过简便的一锅溶剂热法合成了一种新型富氧空位的非晶态 TiO-BiOBr-海泡石复合材料。在可见光照射下,其对气态甲醛的吸附和光催化去除活性得到增强,其反应速率常数分别是无定形 TiO、BiOBr、TiO-BiOBr、氧空位贫化复合材料和 P25 的 11.75、3.44、1.69、2.18 和 6.27 倍。此外,它在可见光下对土霉素的光降解性能也有显著提高。改进的光催化活性主要归因于三元异质结构和引入的氧空位之间的协同作用,导致其具有优越的吸附性能、扩展的可见光吸收范围和更快的载流子分离速率。在反应过程中,空穴是主要的活性物种。此外,还提出了土霉素的可能光降解途径。总的来说,这项工作为实际环境修复室内挥发性有机化合物(VOCs)和药品及个人护理产品(PPCPs)提供了一种可行的可见光驱动光催化剂策略。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验