Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile.
Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
J Exp Zool A Ecol Integr Physiol. 2020 Jun;333(5):333-340. doi: 10.1002/jez.2360. Epub 2020 Apr 19.
Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females exposed for 40 days to two contrasting salinities: hypo-osmotic (150 mOsm·kg ·H O NaCl, HYPO group) and hyper-osmotic environments (340 mOsm·kg ·H O NaCl, HYPER group). We found an increase of plasma osmolality and plasma urea concentration in the animals incubated in the HYPER treatment. Increases in electrolyte concentration were paralleled with an increase of both citrate synthase and cytochrome c oxidase activities in liver and heart. Interestingly, HYPO group had higher catabolic activity of the skin and liver total antioxidant capacity (TAC), compared with animals from the HYPER group. Moreover, there was an inverse relationship between liver TAC and plasma osmolality; and with the metabolic enzymes from liver. These findings suggest that salinity induces changes in urea metabolism and specific activity of metabolic enzymes, which appears to be tissue-dependent in X. laevis. Contrary to our expectations, we also found a moderate change in the oxidative status as revealed by the increase in TAC activity in the animals acclimated to low salinity medium, but constancy in the lipid peroxidation of membranes.
水生动物经常表现出生理调节,以提高其在盐环境中的生物性能和水盐平衡。除了与渗透调节相关的能量成本外,氧化应激和抗氧化系统的激活是许多物种应对盐胁迫的常见细胞反应,但关于两栖动物渗透调节相关氧化稳态的知识还很缺乏。在这里,我们研究了暴露于两种不同盐度(低渗环境:150 mOsm·kg·H2O NaCl,HYPO 组;高渗环境:340 mOsm·kg·H2O NaCl,HYPER 组)40 天后的雌性非洲爪蟾的生化反应和氧化反应。我们发现,在 HYPER 处理组中孵育的动物的血浆渗透压和血浆尿素浓度增加。电解质浓度的增加与肝脏和心脏中柠檬酸合酶和细胞色素 c 氧化酶活性的增加相平行。有趣的是,与 HYPER 组相比,HYPO 组的皮肤和肝脏总抗氧化能力(TAC)的分解代谢活性更高。此外,肝脏 TAC 与血浆渗透压呈负相关;并且与肝脏的代谢酶呈负相关。这些发现表明,盐度诱导尿素代谢和代谢酶特定活性的变化,这在 X. laevis 中似乎是组织依赖性的。与我们的预期相反,我们还发现,适应低盐度介质的动物的 TAC 活性增加,表明氧化状态发生了适度变化,但膜的脂质过氧化保持不变。