Gaffney Erin M, Grattieri Matteo, Beaver Kevin, Pham Jennie, McCartney Caitlin, Minteer Shelley D
Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA.
Departments of Chemistry, Brown University, 324 Brook Street Box H, Providence, 02912, Rhode Island, USA.
Electrochim Acta. 2020 Mar 20;337. doi: 10.1016/j.electacta.2020.135731. Epub 2020 Jan 22.
Little is known about the adaptation strategies utilized by photosynthetic microorganisms to cope with salinity changes happening in the environment, and the effects on microbial electrochemical technologies. Herein, bioinformatics analysis revealed a metabolism shift in resulting from salt stress, with changes in gene expression allowing accumulation of compatible solutes to balance osmotic pressure, together with the up-regulation of the nitrogen fixation cycle, an electron sink of the photosynthetic electron transfer chain. Using the transcriptome evidence of hindered electron transfer in the photosynthetic electron transport chain induced by adaption to salinity, increased understanding of photo-bioelectrocatalysis under salt stress is achieved. Accumulation of glycine-betaine allows immediate tuning of salinity tolerance but does not provide cell stabilization, with a 40 ± 20% loss of photo-bioelectrocatalysis in a 60 min time scale. Conversely, exposure to or inducing the expression of the gene transfer agent tunes salinity tolerance and increases cell stability. This work provides a proof of concept for the combination of bioinformatics and electrochemical tools to investigate microbial electrochemical systems, opening exciting future research opportunities.
关于光合微生物用于应对环境中盐度变化的适应策略以及对微生物电化学技术的影响,我们所知甚少。在此,生物信息学分析揭示了盐胁迫导致的新陈代谢转变,基因表达的变化使得相容性溶质得以积累以平衡渗透压,同时固氮循环上调,固氮循环是光合电子传递链的一个电子汇。利用适应盐度诱导的光合电子传递链中电子传递受阻的转录组证据,我们对盐胁迫下的光生物电催化有了更多了解。甘氨酸 - 甜菜碱的积累可立即调节耐盐性,但不能提供细胞稳定性,在60分钟的时间尺度内光生物电催化损失40±20%。相反,暴露于基因转移因子或诱导其表达可调节耐盐性并增加细胞稳定性。这项工作为结合生物信息学和电化学工具来研究微生物电化学系统提供了概念验证,开启了令人兴奋的未来研究机遇。