Johnson Steven G, Pruinelli Lisiane, Westra Bonnie L
Institute for Health Informatics, University of Minnesota, Minneapolis, MN.
School of Nursing, University of Minnesota, Minneapolis, MN.
AMIA Annu Symp Proc. 2020 Mar 4;2019:504-513. eCollection 2019.
Electronic health record (EHR) data must be mapped to standard information models for interoperability and to support research across organizations. New information models are being developed and validated for data important to nursing, but a significant problem remains for how to correctly map the information models to an organization's specific flowsheet data implementation. This paper describes an approach for automating the mapping process by using stacked machine learning models. A first model uses a topic model keyword filter to identify the most likely flowsheet rows that map to a concept. A second model is a support vector machine (SVM) that is trained to be a more accurate classifier for each concept. The stacked combination results in a classifier that is good at mapping flowsheets to information models with an overall f2 score of 0.74. This approach is generalizable to mapping other data types that have short text descriptions.
电子健康记录(EHR)数据必须映射到标准信息模型,以实现互操作性并支持跨组织的研究。目前正在开发和验证针对护理重要数据的新信息模型,但如何将信息模型正确映射到组织的特定流程表数据实现上,仍然是一个重大问题。本文描述了一种通过使用堆叠机器学习模型来自动化映射过程的方法。第一个模型使用主题模型关键字过滤器来识别最有可能映射到某个概念的流程表行。第二个模型是支持向量机(SVM),它被训练成为每个概念更准确的分类器。堆叠组合产生了一个擅长将流程表映射到信息模型的分类器,总体F2分数为0.74。这种方法可推广到映射具有短文本描述的其他数据类型。