University of Coimbra, Department of Mathematics, Faculty of Sciences and Technology, Coimbra, Portugal; INESC Coimbra, Department of Electrical and Computer Engineering, Coimbra, Portugal.
INESC Coimbra, Department of Electrical and Computer Engineering, Coimbra, Portugal.
Mar Pollut Bull. 2020 Jun;155:111158. doi: 10.1016/j.marpolbul.2020.111158. Epub 2020 Apr 13.
Recent works have shown the feasibility of Unmanned Aerial Systems (UAS) for monitoring marine pollution. We provide a comparison among techniques to detect and map marine litter objects on an UAS-derived orthophoto of a sandy beach-dune system. Manual image screening technique allowed a detailed description of marine litter categories. Random forest classifier returned the best-automated detection rate (F-score 70%), while convolutional neural network performed slightly worse (F-score 60%) due to a higher number of false positive detections. We show that automatic methods allow faster and more frequent surveys, while still providing a reliable density map of the marine litter load. Image manual screening should be preferred when the characterization of marine litter type and material is required. Our analysis suggests that the use of UAS-derived orthophoto is appropriate to obtain a detailed geolocation of marine litter items, requires much less human effort and allows a wider area coverage.
最近的研究表明,无人机系统(UAS)在监测海洋污染方面具有可行性。我们比较了在 UAS 生成的沙滩-沙丘系统正射影像上检测和绘制海洋垃圾物体的技术。手动图像筛选技术可以详细描述海洋垃圾类别。随机森林分类器返回了最佳的自动检测率(F-分数为 70%),而卷积神经网络的表现略差(F-分数为 60%),因为误报检测数量较多。我们表明,自动方法允许更快、更频繁的调查,同时仍能提供可靠的海洋垃圾负荷密度图。当需要对海洋垃圾类型和材料进行特征描述时,应优先采用手动图像筛选。我们的分析表明,使用 UAS 生成的正射影像可以获得详细的海洋垃圾物品地理位置,所需的人力要少得多,并且可以覆盖更大的区域。