Institute of Biochemistry, Goethe University Frankfurt, Biocenter, Germany.
Elife. 2020 Apr 21;9:e55943. doi: 10.7554/eLife.55943.
ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters, responsible for many physiological processes and human maladies. However, the mechanism how chemical energy of ATP facilitates translocation of chemically diverse compounds across membranes is poorly understood. Here, we advance the quantitative mechanistic understanding of the heterodimeric ABC transporter TmrAB, a functional homolog of the transporter associated with antigen processing (TAP) by single-turnover analyses at single-liposome resolution. We reveal that a single conformational switch by ATP binding drives unidirectional substrate translocation. After this power stroke, ATP hydrolysis and phosphate release launch the return to the resting state, which facilitates nucleotide exchange and a new round of substrate binding and translocation. In contrast to hitherto existing steady-state assays, our single-turnover approach uncovers the power stroke in substrate translocation and the tight chemomechanical coupling in these molecular machines.
ATP 结合盒(ABC)转运蛋白构成了主要的主动转运蛋白家族,负责许多生理过程和人类疾病。然而,ATP 的化学能量如何促进化学性质不同的化合物跨膜转运的机制还知之甚少。在这里,我们通过单囊泡分辨率下的单次翻转分析,推进了对异源二聚体 ABC 转运蛋白 TmrAB 的定量机械理解,它是与抗原加工相关的转运蛋白(TAP)的功能同源物。我们揭示了 ATP 结合驱动单向底物转运的单个构象开关。在这个力作用之后,ATP 水解和磷酸盐释放启动回到静止状态,这有利于核苷酸交换和新的一轮底物结合和转运。与迄今为止存在的稳态测定法不同,我们的单次翻转方法揭示了底物转运中的力作用以及这些分子机器中的紧密化学机械耦联。