Suppr超能文献

一种用于多输入多输出物联网的新型机器学习辅助天线选择方案

A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things.

作者信息

An Wannian, Zhang Peichang, Xu Jiajun, Luo Huancong, Huang Lei, Zhong Shida

机构信息

College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Sensors (Basel). 2020 Apr 16;20(8):2250. doi: 10.3390/s20082250.

Abstract

In this article, we propose a multi-label convolution neural network (MLCNN)-aided transmit antenna selection (AS) scheme for end-to-end multiple-input multiple-output (MIMO) Internet of Things (IoT) communication systems in correlated channel conditions. In contrast to the conventional single-label multi-class classification ML schemes, we opt for using the concept of multi-label in the proposed MLCNN-aided transmit AS MIMO IoT system, which may greatly reduce the length of training labels in the case of multi-antenna selection. Additionally, applying multi-label concept may significantly improve the prediction accuracy of the trained MLCNN model under correlated large-scale MIMO channel conditions with less training data. The corresponding simulation results verified that the proposed MLCNN-aided AS scheme may be capable of achieving near-optimal capacity performance in real time, and the performance is relatively insensitive to the effects of imperfect CSI.

摘要

在本文中,我们针对相关信道条件下的端到端多输入多输出(MIMO)物联网(IoT)通信系统,提出了一种多标签卷积神经网络(MLCNN)辅助的发射天线选择(AS)方案。与传统的单标签多类分类机器学习方案不同,在所提出的MLCNN辅助发射AS MIMO物联网系统中,我们选择使用多标签概念,这在多天线选择的情况下可能会大大缩短训练标签的长度。此外,应用多标签概念可以在相关大规模MIMO信道条件下,以较少的训练数据显著提高训练后的MLCNN模型的预测精度。相应的仿真结果验证了所提出的MLCNN辅助AS方案能够实时实现接近最优的容量性能,并且该性能对不完美信道状态信息(CSI)的影响相对不敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fff/7218900/34c59251b2c1/sensors-20-02250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验