Suppr超能文献

一种使用简化结构的低成本激光雷达新型回环检测方法。

A Novel Loop Closure Detection Approach Using Simplified Structure for Low-Cost LiDAR.

作者信息

Ye Qin, Shi Pengcheng, Xu Kunyuan, Gui Popo, Zhang Shaoming

机构信息

College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.

Zhongzhen Tonglu (Jiangsu) Robot Co., Ltd., Shanghai 201804, China.

出版信息

Sensors (Basel). 2020 Apr 17;20(8):2299. doi: 10.3390/s20082299.

Abstract

Reducing the cumulative error is a crucial task in simultaneous localization and mapping (SLAM). Usually, Loop Closure Detection (LCD) is exploited to accomplish this work for SLAM and robot navigation. With a fast and accurate loop detection, it can significantly improve global localization stability and reduce mapping errors. However, the LCD task based on point cloud still has some problems, such as over-reliance on high-resolution sensors, and poor detection efficiency and accuracy. Therefore, in this paper, we propose a novel and fast global LCD method using a low-cost 16 beam Lidar based on "Simplified Structure". Firstly, we extract the "Simplified Structure" from the indoor point cloud, classify them into two levels, and manage the "Simplified Structure" hierarchically according to its structure salience. The "Simplified Structure" has simple feature geometry and can be exploited to capture the indoor stable structures. Secondly, we analyze the point cloud registration suitability with a pre-match, and present a hierarchical matching strategy with multiple geometric constraints in Euclidean Space to match two scans. Finally, we construct a multi-state loop evaluation model for a multi-level structure to determine whether the two candidate scans are a loop. In fact, our method also provides a transformation for point cloud registration with "Simplified Structure" when a loop is detected successfully. Experiments are carried out on three types of indoor environment. A 16 beam Lidar is used to collect data. The experimental results demonstrate that our method can detect global loop closures efficiently and accurately. The average global LCD precision, accuracy and negative are approximately 0.90, 0.96, and 0.97, respectively.

摘要

减少累积误差是同时定位与地图构建(SLAM)中的一项关键任务。通常,利用回环检测(LCD)来完成SLAM和机器人导航的这项工作。通过快速准确的回环检测,能够显著提高全局定位稳定性并减少地图构建误差。然而,基于点云的LCD任务仍存在一些问题,比如过度依赖高分辨率传感器,以及检测效率和准确性较差。因此,在本文中,我们基于“简化结构”提出了一种使用低成本16线束激光雷达的新颖且快速的全局LCD方法。首先,我们从室内点云提取“简化结构”,将其分为两个级别,并根据其结构显著性对“简化结构”进行分层管理。“简化结构”具有简单的特征几何形状,可用于捕捉室内稳定结构。其次,我们通过预匹配分析点云配准的适用性,并提出一种在欧几里得空间中具有多个几何约束的分层匹配策略来匹配两次扫描。最后,我们为多级结构构建一个多状态回环评估模型,以确定这两次候选扫描是否构成一个回环。实际上,当成功检测到回环时,我们的方法还为基于“简化结构”的点云配准提供了一种变换。在三种类型的室内环境中进行了实验。使用16线束激光雷达收集数据。实验结果表明,我们的方法能够高效准确地检测全局回环。全局LCD的平均精度、召回率和负例率分别约为0.90、0.96和0.97。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22fa/7219056/2337c796b557/sensors-20-02299-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验