Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America.
Department of Physics, University of Cape Town, Rondebosch, South Africa.
Phys Med Biol. 2020 Jun 18;65(12):125004. doi: 10.1088/1361-6560/ab8bf0.
This paper describes a realistic simulation of a Compton-camera (CC) based prompt-gamma (PG) imaging system for proton range verification for a range of clinical dose rates, and its comparison to PG measured data with a pre-clinical CC. We used a Monte Carlo plus Detector Effects (MCDE) model to simulate the production of prompt gamma-rays (PG) and their energy depositions in the CC. With Monte Carlo, we simulated PG emission resulting from irradiation of a high density polyethylene phantom with a 150 MeV proton pencil beam at dose rates of 5.0 × 10, 2.6 × 10, and 4.6 × 10 p s. Realistic detector timing effects (e.g. delayed triggering time, event-coincidence, dead time, etc,) were added in post-processing to allow for flexible count rate variations. We acquired PG emission measurements with our pre-clinical CC during irradiation with a clinical 150 MeV proton pencil beam at the same dose rates. For simulations and measurements, three primary changes could be seen in the PG emission data as the dose rate increased: (1) reduction in the total number of detected events due to increased dead-time percentage; (2) increase in false-coincidence events (i.e. multiple PGs interacting, rather than a single PG scatter); and (3) loss of distinct PG emission peaks in the energy spectrum. We used the MCDE model to estimate the quality of our measured PG data, primarily with regards to true and false double-scatters and triple-scatters recorded by the CC. The simulation results showed that of the recorded double-scatter PG interactions 22%, 57%, and 70% were false double-scatters and for triple-scatter interactions 3%, 21%, and 35% were false events at 5.0 × 10, 2.6 × 10, and 4.6 × 10 p s, respectively. These false scatter events represent noise in the data, and the high percentage of these events in the data represents a major limitation in our ability to produce usable PG images with our prototype CC.
本文描述了一种基于康普顿相机(CC)的实时正电子发射断层扫描(PG)成像系统,用于在一系列临床剂量率下验证质子射程,并将其与临床前 CC 测量的 PG 数据进行比较。我们使用蒙特卡罗加探测器效应(MCDE)模型来模拟 CC 中 PG 的产生及其能量沉积。通过蒙特卡罗,我们模拟了高密聚乙烯体模在 150 MeV 质子束笔形束照射下,在 5.0×10、2.6×10 和 4.6×10 p s 的剂量率下产生的 PG 发射。在后期处理中添加了逼真的探测器定时效应(例如延迟触发时间、事件符合、死时间等),以允许灵活的计数率变化。我们在相同剂量率下,用临床 150 MeV 质子束笔形束照射时,用我们的临床前 CC 采集 PG 发射测量值。对于模拟和测量,随着剂量率的增加,PG 发射数据有三个主要变化:(1)由于死时间百分比增加,检测到的事件总数减少;(2)假符合事件(即多个 PG 相互作用,而不是单个 PG 散射)增加;(3)能谱中明显的 PG 发射峰丢失。我们使用 MCDE 模型来估计我们测量的 PG 数据的质量,主要是关于 CC 记录的真实和虚假双散射和三散射。模拟结果表明,在记录的双散射 PG 相互作用中,22%、57%和 70%是虚假双散射,对于三散射相互作用,在 5.0×10、2.6×10 和 4.6×10 p s 时,3%、21%和 35%是虚假事件。这些虚假散射事件代表数据中的噪声,并且这些事件在数据中的高百分比表示我们使用原型 CC 生成可用 PG 图像的能力存在主要限制。