Palese Francesca, Pisa Federica Edith
Medical Area Department, University of Udine, Udine, Italy.
Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
Amyotroph Lateral Scler Frontotemporal Degener. 2020 Aug;21(5-6):428-434. doi: 10.1080/21678421.2020.1752245. Epub 2020 Apr 22.
: (a) to estimate the accuracy of International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) code for amyotrophic lateral sclerosis (ALS) in the Hospital Discharge Database (HDD) of the Italian region Friuli-Venezia Giulia; (b) to identify the predictors of a true positive ALS code; (c) to compare incident and prevalent cases obtained from HDD with those identified in a retrospective population-based study. : Records of all patients discharged 2010-2014 with an ICD-9-CM code for ALS and other motor neuron diseases were extracted from the HDD. For each record, all the available clinical documentation was evaluated to confirm or reject the diagnosis of ALS. ALS incident and prevalent cases were identified. Validity measures were calculated both overall and stratified by patient and hospitalization characteristics. Adjusted odds ratio (aOR), with 95% confidence interval (95%CI), of a true positive code was estimated using unconditional logistic regression. : ALS code had sensitivity 92.9%, specificity 75.3%, positive predictive value (PPV) 92.3%, and negative predictive value (NPV) 76.8%. A true positive ALS code was predicted by concurrent codes for respiratory interventions (aOR: 3.82; 95%CI: 2.09-6.99), primary position code (2.78; 1.68-4.62), non-programed hospitalization (2.06; 1.18-3.61), male patient (1.56; 1.06-2.29), and hospitalization length <14 days (1.42; 1.07-2.84). Two hundred and thirty-six prevalent and 187 incident cases were identified, 84% of those detected in the population-based study. : ALS code shows very good accuracy and identifies a high percentage of true positive, incident and prevalent cases, but additional sources and an algorithm based on selected variables may further improve case identification.
:(a)评估意大利弗留利-威尼斯朱利亚地区医院出院数据库(HDD)中肌萎缩侧索硬化症(ALS)的国际疾病分类第九版临床修订本(ICD-9-CM)编码的准确性;(b)确定真正阳性ALS编码的预测因素;(c)比较从HDD获得的发病和现患病例与在一项基于人群的回顾性研究中确定的病例。:从HDD中提取2010年至2014年出院的所有患有ALS及其他运动神经元疾病ICD-9-CM编码的患者记录。对于每条记录,评估所有可用的临床文档以确认或排除ALS诊断。确定了ALS发病和现患病例。计算了总体以及按患者和住院特征分层的有效性指标。使用无条件逻辑回归估计真正阳性编码的调整比值比(aOR)及其95%置信区间(95%CI)。:ALS编码的敏感性为92.9%,特异性为75.3%,阳性预测值(PPV)为92.3%,阴性预测值(NPV)为76.8%。呼吸干预的并发编码(aOR:3.82;95%CI:2.09 - 6.99)、主要位置编码(2.78;1.68 - 4.62)、非计划性住院(2.06;1.18 - 3.61)、男性患者(1.56;1.06 - 2.29)以及住院时长<14天(1.42;1.07 - 2.84)可预测真正阳性ALS编码。确定了236例现患病例和187例发病病例,占基于人群研究中检测到病例的84%。:ALS编码显示出非常好的准确性,并且能识别出高比例的真正阳性、发病和现患病例,但额外的来源以及基于选定变量的算法可能会进一步改善病例识别。