Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
Department of Industrial Engineering, Tsinghua University, Beijing, China.
Ergonomics. 2020 Jul;63(7):831-849. doi: 10.1080/00140139.2020.1759700. Epub 2020 May 5.
In modern manufacturing systems, especially assembly lines, human input is a critical resource to provide dexterity and flexibility. However, the repetitive precision tasks common in assembly lines can have adverse effects on workers and overall system performance. We present a data-driven approach to evaluating task performance using wearable sensor data (kinematics, electromyography and heart rate). Eighteen participants (gender-balanced) completed repeated cycles of maze tracking and assembly/disassembly. Various combinations of input data types and classification algorithms were used to model task performance. The use of the linear discriminant analysis (LDA) algorithm and kinematic data provided the most promising classification performance. The highest model accuracy was found using the LDA algorithm and all data types, with respective levels of 62.4, 88.6, 85.8 and 94.1% for predicting maze errors, maze speed, assembly/disassembly errors and assembly/disassembly speed. The presented approach provides the possibility for real-time, on-line and comprehensive monitoring of system performance in assembly-lines or similar industries. This paper proposed models the repetitive precision task performance using data collected from wearable sensors. The use of the LDA algorithm and kinematic data provided the most promising classification performance. The presented approach provides the possibility for real-time, on-line and comprehensive monitoring of system performance in assembly lines or similar industries. AD: anterior deltoid; BB: biceps brachii; ECR: extensor carpi radialis; ECU: extensor carpi ulnaris; FCR: flexor carpi radialis; FCU: flexor carpi ulnaris; FN: false negatives; FP: false positives; HR: heart rate; HRR: heart rate reserve; IMUs: inertial measurement units; kNN: k-nearest neighbors; LDA: linear discriminant analysis; MD: medial deltoid; MF: median power frequency; MNF: mean power frequency; MVIC: maximum voluntary isometric contraction; nRMS: normalized root-mean-square amplitudes; PD: posterior deltoid; RandFor: random forests; RHR: resting heart rate; RMS: root-mean-square amplitudes; sEMG: surface electromyographic; SVM: support vector machines; TB: triceps brachii medial; TN: true negatives; TP: true positives; t-SNE: t-distributed Stochastic Neighbor Embedding; UT: upper trapezius.
在现代制造系统中,特别是装配线上,人类的投入是提供灵活性和适应性的关键资源。然而,装配线中常见的重复性精确任务可能对工人和整体系统性能产生不利影响。我们提出了一种使用可穿戴传感器数据(运动学、肌电图和心率)评估任务性能的数据驱动方法。18 名参与者(性别均衡)完成了迷宫跟踪和组装/拆卸的重复循环。使用各种输入数据类型和分类算法的组合来对任务性能进行建模。使用线性判别分析(LDA)算法和运动学数据提供了最有希望的分类性能。使用 LDA 算法和所有数据类型预测迷宫错误、迷宫速度、组装/拆卸错误和组装/拆卸速度的最高模型准确性分别为 62.4%、88.6%、85.8%和 94.1%。提出的方法为在装配线或类似行业中实时、在线和全面监测系统性能提供了可能性。本文提出了一种使用可穿戴传感器采集的数据来建模重复性精确任务性能的模型。使用 LDA 算法和运动学数据提供了最有希望的分类性能。提出的方法为在装配线或类似行业中实时、在线和全面监测系统性能提供了可能性。AD:前三角肌;BB:肱二头肌;ECR:桡侧腕伸肌;ECU:尺侧腕伸肌;FCR:桡侧腕屈肌;FCU:尺侧腕屈肌;FN:假阴性;FP:假阳性;HR:心率;HRR:心率储备;IMUs:惯性测量单元;kNN:k 最近邻;LDA:线性判别分析;MD:中三角肌;MF:中功率频率;MNF:平均功率频率;MVIC:最大随意等长收缩;nRMS:归一化均方根幅度;PD:后三角肌;RandFor:随机森林;RHR:静息心率;RMS:均方根幅度;sEMG:表面肌电图;SVM:支持向量机;TB:肱三头肌内侧;TN:真阴性;TP:真阳性;t-SNE:t 分布随机邻居嵌入;UT:上斜方肌。