Suppr超能文献

用于小分子结晶的接种液滴微流控系统。

Seeded droplet microfluidic system for small molecule crystallization.

作者信息

Garg N, Tona R, Martin P, Martin-Soladana P M, Ward G, Douillet N, Lai D

机构信息

Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, USA.

出版信息

Lab Chip. 2020 May 19;20(10):1815-1826. doi: 10.1039/d0lc00122h.

Abstract

A microfluidic approach to seeded crystallization has been demonstrated using abacavir hemisulfate, a nucleoside analog reverse transcriptase inhibitor, in droplet reactors to control polymorphism and produce particles with a low particle size distribution. Two techniques are introduced: (1) the first technique involves an emulsion system consisting of a dispersed phase solvent and a continuous phase, which holds slight solubility of the dispersed phase solvent. The dispersed phase contains both a dissolved active pharmaceutical ingredient (API) and seeds of the desired polymorph. While the continuous phase enables solvent extraction, the negligible solubility of the API allows for growth of seeds inside droplets via extraction and subsequent API saturation. This technique demonstrates the ability to crystallize the API in spherical agglomerates via slow extraction of droplets. (2) The second technique utilizes a combined dispersed phase by joining in-flow a seed suspension stream with a supersaturated active pharmaceutical ingredient (API) stream. The combined dispersed phase is emulsified in a continuous phase for which the dispersed phase solvent and the API are both insoluble - droplets are incubated at temperatures below their saturation limit to induce crystal growth. Decreasing the concentration of seeds in its input stream resulted in a decreased number of crystals per droplet, increase in crystal size, and decrease in PSD. Temperature cycling was utilized as a proof of concept to demonstrate the ability to reduce the number of seeds per droplet where the optimal goal is to obtain a single seed per droplet for all droplets. Utilizing this approach in conjunction with the ability to produce monodispersed droplet reactors allows for enhanced control of particle size distribution (PSD) by precisely controlling the available mass for each individual seed crystal. The development of this technique as a proof-of-concept for crystallization can be expanded to manufacturing scales in a continuous manner using parallelized droplet generators and flow reactors to precisely control the temperature and crystal growth kinetics of individual droplets.

摘要

已使用阿巴卡韦半硫酸盐(一种核苷类逆转录酶抑制剂)在滴液反应器中证明了一种用于晶种结晶的微流控方法,以控制多晶型并生产具有低粒度分布的颗粒。介绍了两种技术:(1)第一种技术涉及一种乳液体系,该体系由分散相溶剂和连续相组成,连续相对分散相溶剂具有轻微的溶解性。分散相既包含溶解的活性药物成分(API),也包含所需多晶型物的晶种。虽然连续相能够进行溶剂萃取,但API的极低溶解度使得晶种能够通过萃取和随后的API饱和在液滴内部生长。该技术展示了通过缓慢萃取液滴使API在球形团聚物中结晶的能力。(2)第二种技术通过将种子悬浮液流与过饱和活性药物成分(API)流合并形成组合分散相。组合分散相在连续相中乳化,连续相对分散相溶剂和API均不溶解——液滴在低于其饱和极限的温度下孵育以诱导晶体生长。降低其输入流中晶种的浓度会导致每个液滴中的晶体数量减少、晶体尺寸增加以及粒度分布减小。温度循环被用作概念验证,以证明减少每个液滴中晶种数量的能力,最佳目标是所有液滴中每个液滴获得单个晶种。将这种方法与生产单分散滴液反应器的能力相结合,通过精确控制每个单个籽晶的可用质量,可以增强对粒度分布(PSD)的控制。作为结晶概念验证的该技术的开发可以使用并行化滴液发生器和流动反应器以连续方式扩展到制造规模,以精确控制单个液滴的温度和晶体生长动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验